Determination of Nutrient Digestibility, Nitrogen Retention and Excretion and 15N Dilution from Labelled Corn in Swine Diets
##article.abstract##
The objectives of the study were to follow feed-nitrogen (N) using 15N-isotope in terms of digestibility, retention, and dilution in faeces and urine of growing pigs fed unlabeled and labelled corn diets. Corn containing varied concentration of 15N-isotope enrichment in grain was obtained from a study conducted to identify fertilizer application techniques that could maximize efficiency of 15N-isotope uptake into grain, to determine variety differences in uptake efficiency, and to identify potential differences in uptake due to application rates. A total of 12 barrows (mean initial BW = 20.0 ± 1.28 kg, 4 pigs/diet) were used in a completely randomized design, with three dietary treatments: a) Control (unlabelled corn), b) Low 15N-enrichment (mean 15N-isotope = 3.5%), and c) High 15N-enrichment (mean 15N-isotope = 4.1%). The animals were weighed at start and end of study. Pigs were kept in individual crates for 11-d, of which 5-d were for acclimation and 6-d for sample collection. All animals were fed at 70% of predicted ad libitum intake. Chromium oxide (0.2% of diet) was used as a marker to initiate and terminate faecal and urine sampling. Mean daily faecal and urine excretion per pig was 141.99 ± 81.60 g and 1302.38 ± 776.01 ml, respectively. There were no differences (P > 0.05) among diets in ADFI, ADG, and BW. Diets with 15N label, however, resulted in greater (P < 0.01) amounts of 15N-isotope label in feces (0.43 vs. 2.04 vs. 2.06 N atom; SEM= 0.142 for Control, Low, and High 15N-enrichment diets, respectively) and urine (0.40 vs. 1.37 vs. 1.38; 0.036) than in Control diet. Both urine and faecal percent N were higher (P < 0.02; 0.27 vs. 0.49 vs. 0.31%; 0.064) and (P < 0.04; 2.63 vs. 3.25 vs. and 3.10%; 0.179) for Low 15N diet than for Control and High 15N diets, respectively. There were no differences (P > 0.05) in N digestibility (61.23 vs. 46.17 vs. 59.41%; 5.562), retention (31.89 vs. 13.73 vs. 23.10% of intake; 9.734) and balance (17.94 vs. 8.43 vs. 14.32g; 5.463) among diets. The study provides evidence that 15N atom can be used to trace nitrogen flow from grain, into the animal, and back to the field.
References
Bouldin, D. R., Klausner, S. D., & Reid, W. S. (1984). Use of nitrogen from manure. In R. D. Hauck, (Ed.). Nitrogen in Crop Production (pp 221-245). ASA, CSSA, and SSSA, Madison, WI.
Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen-total. In A. L. Page et al. (Eds.), Methods of Soil Analysis, Part 2 (2nd ed.) (pp 595-624). Am Soc. Agron. Madison, WI.
Brundtland, G. H. (1989). How to secure our common future. Scientific America, 261, 134.
Chantigny, M. H., Angers, D. A., Morvan, T., & Pomar, C. (2004). Dynamics of pig slurry nitrogen in soil and plant as determined with 15N. Soil Sci. Soc. Am. J., 68, 637-643.
Colina, J. J., Lewis, A. J., Millar, P. S., & Fischer, R. L. (2001). Dietary manipulation to reduce aerial ammonia concentrations in nursery pig facilities. J. Anim. Sci., 79, 3096-3103.
Comfort, S. D., Motavalli, P. P., Kelling, K. A., & Converse, J. C. (1987). Soil profile N, P, and K changes from injected liquid dairy manure or broadcast fertilizer. Trans. ASAE, 30, 1364-1369.
de Lange, C. F. M., Sauer, W. C., Souffrant, W. B., and K. A. Lein. 1992. 15N-leucine and 15N-isoleucine isotope dilution techniques vs. the 15N-isotope dilution technique for determining the recovery of endogenous protein and amino acids in digesta collected from the distal ileum in pigs. J. Anim. Sci. 70:1848-1856.
de Vries, W., H. Kros, and O. Oenema. 2001. Modeled impacts of farming practices and structural agricultural changes on nitrogen fluxes in the Netherlands. In Proc. 2nd Internatl. Nitrogen Conf. on Science and Policy, the Scientific World (2001) 1. Retrieved from http://www.thescientificworld.com.
Dourmad, J. Y., Guingand, N., Latimier, P., & Sève, B. (1999). Nitrogen and phosphorus consumption, utilization and losses in pig production: France.
Livest. Prod. Sci., 58, 199-211.
Gaudichon, C., Mahé, S., Roos, N., Benamouzig, R., Luengo, C., Fouillet, H., Daré, S., Van Oycke, M., Ferriére, F., Rautureau, J., & Tomé, D. (1999). Net postprandial utilization of [15N]-labeled milk protein nitrogen is influenced by diet compositions in human. J. Nutr., 129, 890-895.
Gaudichon, C., Mahé, S., Roos, N., Benamouzig, R., Luengo, C., Huneau, J. F., Sick, M., Bouley, C., Rautureau, J., & Tomé, D. (1995). Exogenous and endogenous nitrogen flow rates and level of protein hydrolysis in the human jejunum after 15N milk and 15N yogurt ingestion. Br. J. Nutr., 74, 251-260.
Hauck, R. D., & Bremner, J. M. (1976). Use of tracers for soil and fertilizer nitrogen research. Advances in Agronomy, vol. 28. New York, pp 219-266.
He, D. Y., Liao, X. L., Xing, T. X., Zhou, W. J., Fang, Y. J., & He. L. H. (1994). The fate of nitrogen from 15N-labeled straw and green manure in soil-crop-domestic animal systems. Soil Sci., 158, 65-73.
Hodgkinson, S. M., Souffrant, W. B., & Moughan P. J. (2003). Comparison of the enzyme-hydrolyzed casein, guanidination, and isotope dilution methods for determining ileal endogenous protein flow in the growing rat and pig. J. Anim. Sci., 81, 2525-2534.
Jansson, S. L, & Persson, J. (1982). Mineralization and immobilization of soil nitrogen.In F. J. Stevenson, (Ed.). Nitrogen in Agricultural Soils (pp 229-252). Agron.
Monogr. 22. ASA, CSSA, and SSSA, Madison, WI.
Jensen, B., Sørensen, P., Thomsen, I. K., Jensen, E. S., & Christensen, B. T. (1999). Availability of nitrogen in 15N-labeled ruminant manure components to successively grown crops. Soil Sci. Soc. Am. J., 63, 416-423.
Johnson, C. J., Bonrud, P. A., Dosch, T. L., Kilness, A. W., Senger, K. A., Busch, D. C.,& Meyer, M. R. (1987). Fatal outcome of methemoglobinemia in an infant. J. Am. Med. Assoc., 257, 2796-2797.
Jongbloed, A. W., & Lenis, N. P. (1998). Environmental concerns about animal manure. J. Anim. Sci. 76:2641-2648.
Jongbloed, A. W., Poulsen, H. D., Dourmad, J. Y., & van der Peet-Schwering, C. M. C.(1999). Environmental and legislative aspects of pig production in The Netherlands, France and Denmark. Livest. Prod. Sci., 58, 243-249.
Keeney, D. R. (1982). Nitrogen management for maximum efficiency and minimumpollution. Agron., 22, 605.
Kerr, J. D., Showers, W. J., Gilliam, J. W., & Andres, A. S. (2001). Tracing nitrate transport and environmental impact from intensive swine farming using delta
nitrogen-15. J. Env. Qual., 30, 1163-1175.
Kirchmann, H. (1990). Nitrogen interactions and crop uptake from fresh and composted 15N-labelled poultry manure. J. Soil Sci., 4, 379-385.
Klausner, S. (1995). Nutrient management planning. In K. Steele, (Ed.). Animal Waste and the Land-Water Interface (pp 383-392). New York: Lewis Publishers.
Klausner, S. D., Kanneganti, V. R., & Bouldin, D. R. (1994). An approach for estimating a decay series for organic nitrogen in animal manure. Agron. J., 86,
897-903.
Lien, K. A., Sauer, W. C., Mosenthin, R., Souffrant, W. B., & Dugan, M. E. R. (1997). Evaluation of the 15N-isotope dilution technique for determining the recovery of
endogenous protein in ileal digesta of pigs: Effect of dilution in the precursor pool for endogenous nitrogen secretion. J. Anim. Sci., 75, 148-158.
Mahé, S., Roos, N., Benamouzig, R., Sick, H., Baglieri, A., Huneau, J., & Tomé, D. (1994). True exogenous and endogenous nitrogen fractions in the human jejunum after ingestion of small amounts of 15N labelled casein. J. Nutr., 124, 548-555.
Mason, V. C., & Frederiksen, W. (1979). Partitioning of nitrogen in sheep faeces with detergent solutions, and its application to the estimation of the true digestibility of dietary nitrogen and the excretion of non dietary faecal nitrogen. Z. Tierphysiol., Tierernaehr. Futtermittelkd., 41, 121-131.
Meisinger, J. J. (1984). Evaluating plant-available nitrogen in soil-crop systems. P 391-416. In R. D. Hauck, (Ed). Nitrogen in crop production. ASA, CSSA, and SSSA, Madison, WI.
Menzel, R.G., and S.J. Smith. (1984). Soil fertility and plant nutrition.p. 1–34.InM.F. L‘Annunziata and J.O. Legg (ed.) Isotopes and radiation in agricultural sciences.Academic Press, Orlando, FL
Motavalli, P. P., Kelling, K. A., & Converse, J. C. (1989). First-year nutrient availability from injected dairy manure. J. Environ. Qual., 18, 180-185.
Mpassi, D., Rychen, G., Feidt, C., Mertes, M., Laurent, F., Lenoir-Wijnkoop, I., & Antoine, J. M. (2001). Portal absorption of 15N and amino nitrogen in the growing pig after ingestion of labelled milk, yogurt or heat-treated yogurt. Reprod. Nutr. Dev., 41, 153-162.
Mulvaney, R. L. (1993). Mass Spectrometry. In R. Knowles, & T. H. Blackburn, (Eds.), Nitrogen Isotope Techniques (pp 11-57). San Diego, CA: Academic Press.
Muñoz, G. R., Kelling, K. A., Powell, J. M., & Speth, P. E. (2004). Comparison of estimates of first-year dairy manure nitrogen availability or recovery using nitrogen-15 and other techniques. J. Environ. Qual., 33, 719-727.
Muñoz, G. R., Powell, J. M., & Kelling, K. A. (2003). Nitrogen budget and soil dynamics after multiple applications of unlabeled or 15nitrogen-enriched dairy manure. Soil Sci. Soc. Am. J., 67, 817-825.
Nowak, P., Shepard, R., & Madison, F. (1997). Farmers and manure management: A critical analysis. In J. L. Hatfield, & B. A. Stewart, (Ed.). (pp 1-32). Waste Utilization: Effective use of manure as a soil resource. Ann Arbor Press, Chelsea, MI.
NRC (1998). Nutrient Requirements of Swine (10th ed.). Washington, DC: National Academy Press.
Powell, J. M., & Wu, Z. (1999). Nitrogen-15 labelling of dairy faeces and urine for nutrient cycling studies. Agron. J., 91, 814-818.
Powell, J. M., Wu, Z., Kelling, K., Cusick, P., & Muñoz, G. (2004). Differential Nitrogen-15 labelling of dairy manure components for nitrogen cycling studies. Agron. J., 96, 433-441.
African Journal of Education, Science and Technology, Sept/Oct, 2013 Vol 1, No.1
37
Rotz, C. A. (2004). Management to reduce nitrogen losses in animal production. J.
Anim. Sci., 82(E. Suppl.), E119-E137.
Sommer, S. G., & Husted, S. (1995). The chemical buffer system in raw and digested animal slurry. J. Agric. Sci., 124, 45-53.
Sørensen, P., & Jensen, E. S. (1998). The use of 15N labelling to study the turnover and utilization of ruminant manure N. Biol. Fertil. Soils, 28, 56-63.
Sutton, A. L., Nelson, D. W., Myrose, V. B., & Nye, J. C. (1978). Effects of liquid swine waste application on corn yield and soil chemical compounds. J. Environ.
Qual., 7, 325-333.
Thomsen, I. K. (2004). Nitrogen use efficiency of Soc. Am. J., 68, 538-544.
Uenosono, S., Takahashi, S., Nagatomo, M., & Yamamuro, S. (2002). Labelling of poultry manure with 15N. Soil Sci. Plant Nutr., 48, 9-13.
Van Der Hoek, K. W. (1998). Estimating ammonia emission factors in Europe: Summary of the work of the UNECE ammonia expert panel. Atmos. Environ., 32, 315-316.
African Journal of Education, Science and Technology, Sept/Oct, 2013 Vol 1, No.1
38
15N-labeled poultry manure. Soil Sci