Effects of Gamma Irradiation on Physico-chemical, and Functional Properties of Irish Potato Tubers and flours is Dose and Varietal Dependent
##article.abstract##
Irish potato (Solanum tuberosum L.) is a globally significant food crop, serving as a staple for many populations and contributing to food security. Gamma irradiation has emerged as a promising postharvest technology to extend the shelf life of potato tubers by inhibiting sprouting, greening, and microbial spoilage. This review comprehensively analyzes the impact of gamma irradiation on the physical, chemical, and functional properties of Irish potato tubers and flours. Optimal doses of gamma irradiation (50-150 Gy) effectively control sprouting and maintain firmness by delaying metabolic processes. However, higher doses can negatively impact morphology, potentially reducing tuber size and weight. Texture is also affected, with irradiation potentially causing cell wall breakdown, leading to decreased hardness. Gamma irradiation can reduce moisture content due to increased water radiolysis. Protein content may decrease due to structural changes, while lipid content can be reduced through peroxidation or inhibited biosynthesis. Mineral content, such as sodium and potassium, may also decline. Interestingly, irradiation can decrease anti-nutritional factors like solanine and enhance antioxidant properties. Effects on reducing sugars are variable and dose-dependent, with potential for both increases and decreases. Water absorption capacity (WAC) generally increases following irradiation due to starch granule breakdown. Oil absorption capacity (OAC) can be enhanced through oxidation and degradation of starch components. Pasting properties, crucial for texture and consistency, are modified, with peak viscosity potentially increasing at lower doses but decreasing at higher doses. While gamma irradiation offers benefits in preserving potatoes and reducing postharvest losses, it is essential to optimize irradiation conditions to minimize any adverse effects on quality and ensure consumer acceptance.
References
Abong, G. O., Okoth, M. W., Karuri, E. G., Kabira, J. N., & Mathooko, F. M. (2009). Nutrient contents of raw and processed products from Kenyan potato cultivars. Journal of Applied Biosciences, 16, 877–886.
Abong, G., Okoth, M., Imungi, J., & Kabira, J. (2010). Evaluation of selected Kenyan potato cultivars for processing into potato crisps. Agriculture and Biology Journal of North America, 1(5), 886–893. https://doi.org/10.5251/abjna.2010.1.5.886.893
Adedokun, M. O., & Itiola, O. A. (2010). Material properties and compaction characteristics of natural and pregelatinized forms of four starches. Carbohydrate Polymers, 79(4), 818–824. https://doi.org/10.1016/j.carbpol.2009.10.009
Ara, I., Haque, M. M., Farthouse, J., Paul, N., Monjil, M. S., & Kashem, A. (2023). Evaluation of Gamma Irradiation in Controlling Post-Harvest Rot of Ginger and Improvement of Shelf Life. Journal of Agroforestry and Environment, 16(1), 76–95. https://doi.org/10.55706/jae1611
Asmarani, R. R. (2024). Meta-Analysis of the Effects of Gamma Irradiation on Chicken Meat and Meat Product Quality. Veterinary World, 1084–1097. https://doi.org/10.14202/vetworld.2024.1084-1097
Aycan, M., Oğuz, M. Ç., Özgen, Y., Onol, B., & Yildiz, M. (2021). Gamma Radiation Effect on Agrobacterium Tumefaciens-Mediated Gene Transfer in Potato (Solanum Tuberosum L.). https://doi.org/10.5772/intechopen.99878
Bian, Z., Su, K., Zhang, J., Zhao, S., Zhou, H., Zhang, W., Zhang, Y., Zhang, T., Chen, J., Dang, K., Ning, J., & Hao, Y. (2019). Gamma Irradiation Impact on GaN Quasi-Vertical Schottky Barrier Diodes. Journal of Physics D Applied Physics, 53(4), 45103. https://doi.org/10.1088/1361-6463/ab4c6f
Bonierbale, M., Zapata, G. B., zum Felde, T., & Sosa, P. (2010). Composition nutritionnelle des pommes de terre. Cahiers de Nutrition et de Diététique, 45(6), S28–S36.
Buzera, A., Nkirote, E., Abass, A., Orina, I., & Sila, D. (2023). Chemical and Pasting Properties of Potato Flour (Solanum tuberosum L.) in relation to Different Processing Techniques. Journal of Food Processing and Preservation, 2023, 3414760. https://doi.org/10.1155/2023/3414760
Chepkoech, E. (2018). Application Of Gamma Induced Mutation In Breeding For Bacterial Wilt (Ralstonia Solanacearum) Disease Resistance In Potato (Solanum tuberosum L.) (Doctoral dissertation, University of Eldoret).
Chepkoech, E., Kinyua, M. G., Kiplagat, O., Ochuodho, J. O., & Kimno, S. K. (2022). Analysis of Gamma Irradiated Potato Genotypes Based on Selected Agronomic Traits. The International Journal of Biotechnology, 11(1), 1–11. https://doi.org/10.18488/57.v11i1.2911
Costa, L. F., da Silva, E. B., & Oliveira, I. S. (2013). Irradiação gama em amendoim para controle de Aspergillus flavus. Scientia Plena, 9(8 (b)).
Dettori, C. A., Serreli, L., Lombrana, A. C., Fois, M., Tamburini, E., Porceddu, M., Fenu, G., Cogoni, D., & Bacchetta, G. (2018). The Genetic Structure and Diversity OfGentiana Luteasubsp.lutea(Gentianaceae) in Sardinia: Further Insights for Its Conservation Planning. Caryologia, 71(4), 489–496. https://doi.org/10.1080/00087114.2018.1505266
Ezekiel, R., Singh, B., & Datta, P. S. (2008). Effect of low dose of gamma irradiation on the chipping quality of potatoes stored at 8 and 12° C. Potato Journal, 35(1and2), 31–40.
Gani, A., Nazia, S., Rather, S. A., Wani, S. M., Shah, A., Bashir, M., Masoodi, F. A., & Gani, A. (2014). Effect of γ-irradiation on granule structure and physicochemical properties of starch extracted from two types of potatoes grown in Jammu & Kashmir, India. LWT - Food Science and Technology, 58(1), 239–246. https://doi.org/https://doi.org/10.1016/j.lwt.2014.03.008
Gikundi, E. N. (2021). Physico-chemical properties and storability of selected Irish potato varieties grown in Kenya. JKUAT-CoANRE.
Gikundi, N. E., Daniel, N. S., Irene, N. O., & Ariel, K. B. (2021). Physico-chemical properties of selected Irish potato varieties grown in Kenya. African Journal of Food Science, 15(1), 10–19. https://doi.org/10.5897/ajfs2020.2025
Githieya, R. N., Kahenya, P. K., & Karanja, P. N. (2021). Effects Of Variety , Maturity Stage , Storage Conditions And Period On The Physico-Chemical Properties Of Potatoes. 85, 1–4.
Gökmen, V., Akbudak, B., Serpen, A., Acar, J., Turan, Z. M., & Eriş, A. (2007). Effects of controlled atmosphere storage and low-dose irradiation on potato tuber components affecting acrylamide and color formations upon frying. European Food Research and Technology, 224, 681–687.
Grun, P. (1990). The evolution of cultivated potatoes. Economic Botany, 44(3), 39–55.
Haider, M. W., Nafees, M., Ahmad, I., Ali, B., Maryam, Iqbal, R., Vodnar, D. C., Marc, R. A., Kamran, M., Saleem, M. H., Al-Ghamdi, A. A., Al-Hemaid, F. M., & Elshikh, M. S. (2022). Postharvest Dormancy-Related Changes of Endogenous Hormones in Relation to Different Dormancy-Breaking Methods of Potato (Solanum Tuberosum L.) Tubers. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.945256
Hayashi, T. (1988). Identification of irradiated potatoes by impedemetric methods. Report of a WHO Working Group, 432–452.
International Atomic Energy Agency, V. (Austria). (1997). Irradiation of bulbs and tuber crops A compilation of technical data for its authorization and control. 2(April), 101. http://inis.iaea.org/search/search.aspx?orig_q=RN:28041660
Jan, S., Parween, T., Siddiqi, T. O., & Mahmooduzzafar, X. (2012). Effect of gamma radiation on morphological, biochemical, and physiological aspects of plants and plant products. Environmental Reviews, 20(1), 17–39. https://doi.org/10.1139/a11-021
Joshi, M. R., Srirangarajan, A. N., & Thomas, P. (1990). Effects of gamma irradiation and temperature on sugar and vitamin C changes in five Indian potato cultivars during storage. Food Chemistry, 35(3), 209–216. https://doi.org/10.1016/0308-8146(90)90034-2
Kara, A., & Arıcı, Ş. E. (2019). Determination of Gamma Rays Efficiency Against Rhizoctonia Solani in Potatoes. Open Chemistry, 17(1), 254–259. https://doi.org/10.1515/chem-2019-0033
Kaur, M., Kaushal, P., & Sandhu, K. S. (2013). Studies on physicochemical and pasting properties of Taro (Colocasia esculenta L.) flour in comparison with a cereal, tuber and legume flour. Journal of Food Science and Technology, 50, 94–100.
Klang, J. M., Tene, S. T., Nguemguo Kalamo, L. G., Boungo, G. T., Ndomou Houketchang, S. C., Kohole Foffe, H. A., & Womeni, H. M. (2019). Effect of bleaching and variety on the physico-chemical, functional and rheological properties of three new Irish potatoes (Cipira, Pamela and Dosa) flours grown in the locality of Dschang (West region of Cameroon). Heliyon, 5(12), e02982. https://doi.org/10.1016/j.heliyon.2019.e02982
Kumari, M., Kumar, M., & Solankey, S. S. (2018). Breeding Potato for Quality Improvement. Potato - From Incas to All Over the World. https://doi.org/10.5772/intechopen.71482
Lei, X., Wang, S., Li, Y., Han, H., Zhang, X., Mao, X., & Ren, Y. (2024). The multi-scale structure changes of γ-ray irradiated potato starch to mitigate pasting/digestion properties. Food Research International, 178, 113931. https://doi.org/https://doi.org/10.1016/j.foodres.2024.113931
Leonel, M., do Carmo, E. L., Fernandes, A. M., Soratto, R. P., Ebúrneo, J. A. M., Garcia, É. L., & dos Santos, T. P. R. (2017). Chemical composition of potato tubers: the effect of cultivars and growth conditions. Journal of Food Science and Technology, 54(8), 2372–2378. https://doi.org/10.1007/s13197-017-2677-6
Li, P., & Huang, W. (2022). Gamma-Irradiation-Induced Degradation of the Water-Soluble Polysaccharide From Auricularia Polytricha and Its Anti-Hypercholesterolemic Activity. Molecules, 27(3), 1110. https://doi.org/10.3390/molecules27031110
Lim, J. H., Baek, M. H., & Kim, J. S. (2005). Effect of the Storage Temperature, Duration and Gamma Irradiation on the Respiration Rate and Sugar Content of Minituber" Superior". 한국환경농학회지, 24(1), 61–65.
Liu, J., Zhao, S., Wang, F., Long, T., Chen, B., Wang, D., & Gao, P. (2022). The Effect of Electron Beam Irradiation on the Microbial Stability and Quality Characteristics of Vacuum‐packaged Ready‐to‐eat Potato. Journal of Food Processing and Preservation, 46(10). https://doi.org/10.1111/jfpp.16829
Liu, M., Chen, R., & Tsai, M. (1990). Effect of low‐temperature storage, gamma irradiation and iso‐propyl‐N‐(3‐chlorophenyl carbamate) treatment on the processing quality of potatoes. Journal of the Science of Food and Agriculture, 53(1), 1–13.
Lu, Z. H., Donner, E., Yada, R. Y., & Liu, Q. (2012). Impact of γ-irradiation, CIPC treatment, and storage conditions on physicochemical and nutritional properties of potato starches. Food Chemistry, 133(4), 1188–1195. https://doi.org/10.1016/j.foodchem.2011.07.028
Maltsev, S. V., Andrianov, S. V., Timoshina, N. A., Knyazeva, E. V., Biryukova, V. A., & Tsygvintsev, P. N. (2022). The influence of gamma irradiation on the storability and biochemical parameters of potato tubers. The Agrarian Scientific Journal, 10, 50–54. https://doi.org/10.28983/asj.y2022i10pp50-54
Mansour, H. M., Hamideldin, N., Abdel-Tawab, F. M., Fahmy, E. M., Demerdash, H. E., & Amar, M. H. (2018). Physiological and Genetical Study for the Effect of Gamma Irradiation on Moringa Olefiera Lam. Egyptian Journal of Radiation Sciences and Applications, 0(0), 0. https://doi.org/10.21608/ejrsa.2018.2286.1035
Manupriya, B. R., Lathika, Somashekarappa, H. M., Patil, S. L., & Shenoy, K. B. (2020). Study of gamma irradiation effects on the physico-chemical properties of wheat flour (Triticum aestivum, L.). In Radiation Physics and Chemistry (Vol. 172). Elsevier Ltd. https://doi.org/10.1016/j.radphyschem.2020.108693
Mohamed, E. A., Hafez, A. E. E., Seadawy, H. G., Elrefai, M. F. M., Abdallah, K. M., Bayomi, R. M. E., Mansour, A. T., Bendary, M. M., Izmirly, A. M., Baothman, B. K., Alwutayd, K. M., & Mahmoud, A. F. A. (2023). Irradiation as a Promising Technology to Improve Bacteriological and Physicochemical Quality of Fish. Microorganisms, 11(5), 1105. https://doi.org/10.3390/microorganisms11051105
MONDY, N. I., & GOSSELIN, B. (1989). Effect of irradiation on discoloration, phenols and lipids of potatoes. Journal of Food Science, 54(4), 982–984.
Munir, N., Qaiser, H. Z., Haq, R., Naz, S., Saleem, F., & Manzoor, F. (2015). Effect of Gamma Radiation on Sprout Inhibition and Nutritional Value of Potato. Life, 13(3), 153–156.
Murniece, I., Karklina, D., Galoburda, R., Santare, D., Skrabule, I., & Costa, H. S. (2011). Nutritional composition of freshly harvested and stored Latvian potato (Solanum tuberosum L.) varieties depending on traditional cooking methods. Journal of Food Composition and Analysis, 24(4–5), 699–710. https://doi.org/10.1016/j.jfca.2010.09.005
Ndungutse, V., Vasanthakaalam, H., Faraj, A. K., & Ngoda, P. (2019). ( Solanum Tuberosum L .) Cultivars Grown. Potato Journal, 46(July), 48–55.
Nouri, J., & Toofanian, F. (2001). Extension of storage of onions and potatoes by gamma irradiation. Pak J Biol Sci, 4(10), 1275–1278.
Nwokocha, L. M., Aviara, N. A., Senan, C., & Williams, P. A. (2014). A comparative study of properties of starches from Irish potato (Solanum tuberosum) and sweet potato (Ipomea batatas) grown in Nigeria. Starch/Staerke, 66(7–8), 714–723. https://doi.org/10.1002/star.201300237
Ogata, K., Iwata, T., & Chachin, K. (1959). The Effect of Gamma Radiation on Sprout Prevention and Its Physiological Mechanism in the Potato Tuber and the Onion Bulb (Special Issue on Physical, Chemical and Biological Effects of Gamma Radiation). Bulletin of the Institute for Chemical Research, Kyoto University, 37(5–6), 425–436.
Olatunde, G. O., Arogundade, L. K., & Orija, O. I. (2017). Chemical, functional and pasting properties of banana and plantain starches modified by pre-gelatinization, oxidation and acetylation. Cogent Food & Agriculture, 3(1), 1283079.
Oliveira, A. C. S., de Araújo, T. H., Spers, E. E., da Silva, H. M. R., & de Lima, L. M. (2020). Consumer Preferences for Potato Cultivars with Different Culinary Aptitudes: a Case Study from São Paulo. American Journal of Potato Research, 97(6), 535–546. https://doi.org/10.1007/s12230-019-09756-1
Ooko, G. A. (2008). Evaluation of the physico-chemical properties of selected potato varieties and clones and their potential for processing into frozen french fries. 2–100.
Ramadan, M. F. (2016). Potato Lipids. In Advances in Potato Chemistry and Technology (Second Edi). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800002-1.00005-4
Rezaee, M., Almassi, M., Farahani, A. M., Minaei, S., & Khodadadi, M. (2011). Potato sprout inhibitionn and tuber quality after post harvest treatment with gamma irradiation on different dates. Journal of Agricultural Science and Technology, 13(6), 829–842.
Rezaee, M., Almassi, M., Minaei, S., & Paknejad, F. (2013). Impact of post-harvest radiation treatment timing on shelf life and quality characteristics of potatoes. Journal of Food Science and Technology, 50(2), 339–345. https://doi.org/10.1007/s13197-011-0337-9
Robertson, T. M., Alzaabi, A. Z., Robertson, M. D., & Fielding, B. A. (2018). Starchy carbohydrates in a healthy diet: The role of the humble potato. Nutrients, 10(11). https://doi.org/10.3390/nu10111764
Saad, A. (2009). Physical characteristics and chemical properties of potato tubers under different storage systems. Misr Journal of Agricultural Engineering, 26, 385–408.
Sanni, T. A., Ogundele, J. O., Ogunbusola, E. M., & Oladimeji, O. (2015). Effect of gamma irradiation on mineral, vitamins and cooking properties of Sorrel (Hibiscus sabdariffa Ll) seeds. 2nd International Conference on Chemical, Biological, and Environmental Sciences (ICCBES’15) Dubai (UAE). Http://Dx. Doi. Org/10.17758/IAAST A, 515044.
Sarkar, P., & Mahato, S. K. (2020). Effect of Gamma Irradiation on Sprout Inhibition and Physical Properties of Kufri Jyoti Variety of Potato. International Journal of Current Microbiology and Applied Sciences, 9(7), 1066–1079. https://doi.org/10.20546/ijcmas.2020.907.125
Singh, N., Kaur, A., Shevkani, K., Ezekiel, R., Kaur, P., Isono, N., & Noda, T. (2018). Structural, Morphological, Thermal, and Pasting Properties of Starches From Diverse Indian Potato Cultivars. Starch/Staerke, 70(3–4). https://doi.org/10.1002/star.201700130
Soares, I. G. M., da Silva, E. B., Amaral, A. J., Machado, E. C. L., & Silva, J. M. (2016). Physico-chemical and sensory evaluation of potato (Solanum tuberosum L.) after irradiation. Anais Da Academia Brasileira de Ciencias, 88(2), 941–950. https://doi.org/10.1590/0001-3765201620140617
Subía, X. C. (2013). Potato quality traits: variation and genetics in Ecuadorian potato landraces. Wageningen University and Research.
Todoriki, S., Dan, K., & Hayashi, T. (1994). Lipid content and fatty acid composition of gamma-irradiated potato tubers. Nippon Shokuhin Kogyo Gakkaishi, 41(5), 358–362.
Verma, K., Jan, K., & Bashir, K. (2019). γ Irradiation of Cowpea and Potato Starch: Effect on Physicochemical Functional and Rheological Properties. Journal of Food Processing & Technology, 10(9), 1–8. https://doi.org/10.35248/2157-7110.19.10.810
Waglay, A., & Karboune, S. (2016). Potato Proteins: Functional Food Ingredients. In Advances in Potato Chemistry and Technology (Second Edi). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800002-1.00004-2
Wailare, A. M., & Madu, A. I. (2019). Growth Variability of Irish Potato (Solanum Tuberosum L.) as Affected by Cultivars and Sowing Date in the Sudan Savannah Zone of Nigeria. Journal of Dryland Agriculture, 5(2), 7–14. https://doi.org/10.5897/joda2018.0007
Wayumba, B. O., Choi, H. S., & Seok, L. Y. (2019). Selection and evaluation of 21 potato (Solanum tuberosum) breeding clones for cold chip processing. Foods, 8(3). https://doi.org/10.3390/foods8030098
Widaningsih, N. A. (2023). Genetic Diversity and Population Structure Analysis of Potato Somaclones. Hayati Journal of Biosciences, 30(6), 1008–1016. https://doi.org/10.4308/hjb.30.6.1008-1016
YUSSUF, T. S. (2024). Impact of Acetylation and Oxidation on Some Functional, Structural and Pasting Properties of Irish Potato (Solanum tuberosum) starch. FUPRE Journal of Scientific and Industrial Research (FJSIR), 8(3), 28–39.https://doi.org/10.3389/fsufs.2024.1371741