Phytoremediation of Chromium and Lead-Contaminated Soil Using Putative Raphanus raphanistrum

  • Gelas M. Simiyu
  • Salia S. Sheriff
  • Miriam G. Kinyua
##article.subject##: Agriculture, bioremediation, potentially toxic elements, mutation, and colchicine

##article.abstract##

Potentially toxic elements, including Chromium and Lead, naturally occur in the environment, however, human activities such as extensive farming, industrialization, and mining increase Potentially toxic element concentrations in soils. Hence, this study aimed to assess enhanced phytoremediation of Chromium and Lead-contaminated soils with putative mutant, Raphanus raphanistrum (wild radish). The putative plant was enhanced to phytoremediation of Chromium and Lead-contaminated soils. The soil physicochemical parameters pH, total organic matter, cation exchange capacity, and electrical conductivity determined were 5.20, 2.57%, 21.50 meq%, and 0.05 mS/cm, respectively. Raphanus raphanistrum seeds were treated with 0.00%, 0.25%, 0.50%, and 1.00% concentrations of colchicine to heighten growth and morphological development in enhanced phytoremediation of potentially toxic elements in soil. The treated Raphanus raphanistrum at 0.50% colchicine removed 226.69±1.22 mg/Kg and 236.95±0.82 mg/Kg of Chromium and 880.49±1.46 mg/Kg and 518.80±0.81 mg/Kg Lead in the first (M1) and second (M2) generations respectively. At the same treatment level, the putative plant hyperaccumulation potentially toxic elements at M1 and M2 generations absorbed 68.60% and 22.00% of Chromium and Lead, respectively. The plant bioaccumulated high amounts of metal elements, Chromium and Lead, capable of causing potential environmental and health concerns. This study finding contributes significantly to phytoremediation techniques in ecological restoration and recommends putative R. raphanistrum for Chromium and Lead polluted soil decontamination.

Author Biographies

Gelas M. Simiyu

Department of Environmental Biology and Health, School of Environmental Studies, P.O Box 1125-30100 University of Eldoret                                                                                                                                                                                                                                                                                                                                                                            

Salia S. Sheriff

Department of Environmental Science, College of Science, Technology, Environmental and Climate Change (COSTECC), University of Liberia, Liberia

Miriam G. Kinyua

Department of Biotechnology, School of Agriculture and Biotechnology, P.O Box 1125-30100 University of Eldoret

References

Abello, N., Ruiz, J., Rio, J., & Pascual, P. (2021). In vitro chromosome doubling of tomato var. Improved Pope (Lycopersicon esculentum Mill) via colchicine. Thai Journal of Agricultural Science, 54(1), 14− 21-14− 21.

Al-Naggar, A., Al-Azab, K. F., Sobieh, S., & Atta, M. (2015). Morphological and SSR assessment of putative drought tolerant M3 and F3 families of wheat (Triticum aestivum L.). Biotechnology Journal International, 174-190.

Alaboudi, K. A., Ahmed, B., & Brodie, G. (2018). Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Annals of
agricultural sciences, 63(1), 123-127.

Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869-881.
Aqafarini, A., Lotfi, M., Norouzi, M., & Karimzadeh, G. (2019). Induction of tetraploidy in garden cress: morphological and cytological changes. Plant Cell, Tissue and Organ Culture (PCTOC), 137(3), 627-635.

Arshad, M., Merlina, G., Uzu, G., Sobanska, S., Sarret, G., Dumat, C., . . . Kallerhoff, J. (2016). Phytoavailability of lead altered by two Pelargonium cultivars grown on contrasting lead-spiked soils. Journal of soils and sediments, 16(2), 581-591.

Assaad, H. I., Hou, Y., Zhou, L., Carroll, R. J., & Wu, G. (2015). Rapid publication-ready MS-Word tables for two-way ANOVA. SpringerPlus, 4(1), 33.

Awa, S. H., & Hadibarata, T. (2020). Removal of heavy metals in contaminated soil by phytoremediation mechanism: a review. Water, Air, & Soil Pollution, 231(2), 1-15.

Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E.-J., Berk, R., . . . Camerer, C. (2018). Redefine statistical significance. Nature Human Behaviour, 2(1), 6.

CHEN, CUI, Q.-z., HUANG, S.-w., WANG, S.-h., LIU, X.-h., LU, X.-y., . . . Yun, T. (2018). An EMS mutant library for cucumber. Journal of Integrative Agriculture, 17(7), 1612-1619.

Chen, F., Gao, J., Li, W., Liu, Y., Fang, P., & Peng, Z. (2021). Colchicine-induced tetraploidy influences morphological and cytological characteristics and enhances accumulation of anthocyanins in a red-fleshed radish (Raphanus sativus L.). Horticulture, Environment, and Biotechnology, 62(6), 937-948.

Chen, L., Yang, J.-y., & Wang, D. (2020). Phytoremediation of uranium and cadmium contaminated soils by sunflower (Helianthus annuus L.) enhanced with biodegradable chelating agents. Journal of Cleaner Production, 263, 121491.

Chen, W., Zhang, Y., Huang, S., Ren, J., & Feng, H. (2022). l-Ascorbic acid sodium salt promotes microspore embryogenesis and chromosome doubling by colchicine in ornamental kale (Brassica oleracea var. acephala). Plant Cell, Tissue and Organ Culture (PCTOC), 1-13.

Das, R., & Jayalekshmy, V. (2015). Mechanism of heavy metal tolerance and improvement of tolerance in crop plants. J Glob Biosci, 4(7), 2678-2698.

Deng, T.-H.-B., van der Ent, A., Tang, Y.-T., Sterckeman, T., Echevarria, G., Morel, J.-L., & Qiu, R.-L. (2018). Nickel hyperaccumulation mechanisms: a review on the current state of knowledge. Plant and Soil, 423(1), 1-11.

Diana, P. (2013). AN OVERVIEW OF STATISTICAL PACKAGES USED IN ENVIRONMENTAL PROTECTION RESEARCHES.

Eng, W.-H., & Ho, W.-S. (2019). Polyploidization using colchicine in horticultural plants: a review. Scientia horticulturae, 246, 604-617.

FAO/IAEA. (2018). Manual on Mutation Breeding - Third edition. Spencer-Lopes, M.M., Forster, B.P. and Jankuloski, L. (eds.). Food and Agriculture Organization of the United Nations. Rome, Italy, . 301

Farooqi, Z. U. R., Hussain, M. M., Ayub, M. A., Qadir, A. A., & Ilic, P. (2022). Potentially toxic elements and phytoremediation: Opportunities and challenges. Phytoremediation, 19-36.

Fei, X., Lou, Z., Xiao, R., Ren, Z., & Lv, X. (2020). Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models. Science of the Total Environment, 747, 141293.

Feng, Y., Wang, Q., Meng, Q., Liu, Y., Pan, F., Luo, S., . . . Yang, X. (2019). Chromosome doubling of Sedum alfredii Hance: A novel approach for improving phytoremediation efficiency. Journal of Environmental Sciences, 86, 87-96.

George, D., & Mallery, P. (2016). IBM SPSS statistics 23 step by step: A simple guide and reference: Routledge.

Gul, I., Manzoor, M., Kallerhoff, J., & Arshad, M. (2020). Enhanced phytoremediation of lead by soil applied organic and inorganic amendments: Pb phytoavailability, accumulation and metal recovery. Chemosphere, 258, 127405.

Gworek, B., Dmuchowski, W., Koda, E., Marecka, M., Baczewska, A. H., Brągoszewska, P., . . . Osiński, P. (2016). Impact of the municipal solid waste Łubna Landfill on environmental pollution by heavy metals. Water, 8(10), 470.

Helaluddin, A. S. K., Reem; Alaama, Mohamed; Abbas, Syed Atif. (2016). Main Analytical Techniques Used for Elemental Analysis in Various Matrices. Tropical Journal of Pharmaceutical Research, 15 (2), 427-434. Retrieved from http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v15i2.29. doi:10.4314/tjpr.v15i2.29

Hou, S., Zheng, N., Tang, L., Ji, X., & Li, Y. (2019). Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area. Environmental monitoring and assessment, 191(10), 1-10.

Hussain, A., Hamayun, M., Rahman, H., Iqbal, A., Shah, M., Irshad, M., . . . Islam, B. (2018). Bioremediation of hexavalent chromium by endophytic fungi; safe and improved production of Lactuca sativa L. Chemosphere, 211, 653-663.

Iyda, J. H., Fernandes, Â., Ferreira, F. D., Alves, M. J., Pires, T. C., Barros, L., . . . Ferreira, I. C. (2019). Chemical composition and bioactive properties of the wild edible plant Raphanus raphanistrum L. Food Research International, 121, 714-722.

Kamunda, C., Mathuthu, M., & Madhuku, M. (2016). Health risk assessment of heavy metals in soils from Witwatersrand gold mining basin, South Africa. International Journal of Environmental Research and Public Health, 13(7), 663.

Kara, Z., Sabır, A., Yazar, K., Doğan, O., & Şit, M. M. (2018). Effects of colchicine treatments on some grape rootstock and grape varieties at cotyledon stage. Selcuk Journal of Agriculture and Food Sciences, 32(3), 424-429.

Kebaso, L., Frimpong, D., Iqbal, N., Bajwa, A. A., Namubiru, H., Ali, H. H., . . . Chauhan, B. S. (2020). Biology, ecology and management of Raphanus raphanistrum L.: a noxious agricultural and environmental weed. Environmental Science and Pollution Research, 27(15), 17692-17705.

Kelepertzis, E. (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma, 221, 82-90.

Keshavarz, S., Ghasemi-Fasaei, R., Ronaghi, A., & Mousavi, A. A. (2021). Innovative assisted phytoremediation of multi-elements contaminated soil by ryegrass: an electro-bio-chemical approach. Journal of soils and sediments, 21(7), 2604-2618.

Khursheed, S., Raina, A., Parveen, K., & Khan, S. (2017). Induced phenotypic diversity in the mutagenized populations of faba bean using physical and chemical mutagenesis. J Saudi Soc Agric Sci.

Kim, H. L., Lee, J., & Chae, W. B. (2022). Polyploidization reduces the probability of selecting progenies with high root pithiness and yield potential in radish (Raphanus sativus L.). Horticulture, Environment, and Biotechnology, 63(2), 239-247.

Kingston, H., & Walter, P. J. (1998). The art and science of microwave sample preparations for trace and ultratrace elemental analysis. Inductively coupled plasma mass spectrometry, 33-81.

Kome, G. K., Enang, R. K., Yerima, B. P. K., & Lontsi, M. G. R. (2018). Models relating soil pH measurements in H2O, KCl and CaCl2 for volcanic ash soils of Cameroon. Geoderma Regional, 14, e00185.

Kumar, D., Singh, D., Barman, S., & Kumar, N. (2016). Heavy metal and their regulation in plant system: an overview. Plant responses to xenobiotics, 19-38.

Kumar, V., Singh, J., & Kumar, P. (2019). Heavy metals accumulation in crop plants: Sources, response mechanisms, stress tolerance and their effects. Contaminants in agriculture and environment: health risks and remediation, 1, 38.

Leung, A. O., Duzgoren-Aydin, N. S., Cheung, K., & Wong, M. H. (2008). Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China. Environmental science & technology, 42(7), 2674-2680.

Li, F., Yang, F., Chen, Y., Jin, H., Leng, Y., & Wang, J. (2020). Chemical reagent-assisted phytoextraction of heavy metals by Bryophyllum laetivirens from garden soil made of sludge. Chemosphere, 253, 126574.

Luo, Z.-B., He, J., Polle, A., & Rennenberg, H. (2016). Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency. Biotechnology Advances, 34(6), 1131-1148.

Magnusson, B., & Örnemark, U. e. (2014). Eurachem Guide: The Fitness for Purpose of Analytical Methods-A Laboratory Guide to Method Validation and Related Topics. EuraChem. doi:www.eurachem.org

Manzoor, A., Ahmad, T., Bashir, M. A., Baig, M. M. Q., Quresh, A. A., Shah, M. K. N., & Hafiz, I. A. (2018). Induction and identification of colchicine induced polyploidy in Gladiolus grandiflorus ‘White Prosperity’. Folia Horticulturae, 30(2), 307-319.

Mwathi, M. W., Gupta, M., Quezada-Martinez, D., Pradhan, A., Batley, J., & Mason, A. S. (2020). Fertile allohexaploid Brassica hybrids obtained from crosses between B. oleracea and B. juncea via ovule rescue and colchicine treatment of cuttings. Plant Cell, Tissue and Organ Culture (PCTOC), 140(2), 301-313.

Nedjimi, B. (2021). Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Applied Sciences, 3(3), 1-19.

Okereafor, U., Makhatha, M., Mekuto, L., Uche-Okereafor, N., Sebola, T., & Mavumengwana, V. (2020). Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. International journal of environmental research and public health, 17(7), 2204.

Oladosu, Y., Rafii, M. Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H. A., . . . Usman, M. (2016). Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology & Biotechnological Equipment, 30(1), 1-16.

Olafisoye, O. B., Adefioye, T., & Osibote, O. A. (2013). Heavy metals contamination of water, soil, and plants around an electronic waste dumpsite. Pol. J. Environ. Stud, 22(5), 1431-1439.

Ondrasek, G., Begić, H. B., Zovko, M., Filipović, L., Meriño-Gergichevich, C., Savić, R., & Rengel, Z. (2019). Biogeochemistry of soil organic matter in agroecosystems & environmental implications. Science of the Total Environment, 658, 1559-1573.

Opaluwa, O. D., Aremu, M. O., Ogbo, L. O., Abiola, K. A., Odiba, I. E., Abubakar, M. M., & Nweze, N. O. (2012). Heavy metal concentrations in soils, plant leaves and crops grown around dump sites in Lafia Metropolis, Nasarawa State, Nigeria. Advances in Applied Science Research, 3(2), 780-784.

Pino-Vallejo, M., Latorre, A. R., Robayo, M. H., Orozco, A. A., & Cahueñas, N. P. TREATMENT OF LEAD CONTAMINATED WASTE SLUDGE USING THE WILD RADISH VEGETABLE SPECIES Raphanus raphanistrum.
Poursattari, R., & Hadi, H. (2022). Lead Phytoremediation, Distribution, and Toxicity in Rapeseed (Brassica napus L.): the Role of Single and Combined Use of Plant Growth Regulators and Chelators. Journal of Soil Science and Plant Nutrition, 1-18.

Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental monitoring and assessment, 191(7), 1-21.

Rezvani, M., & Zaefarian, F. (2011). Bioaccumulation and translocation factors of cadmium and lead in'Aeluropus littoralis'. Australian Journal of Agricultural Engineering, 2(4), 114-119.

Rodiansah, A., & Puspita, M. I. (2020). In vitro polyploidy induction of foxtail millet (Setaria italica (L) beauv) cv. buru hotong using colchicine treatment. Paper presented at the IOP Conference Series: Earth and Environmental Science.

Solis, C., Andrade, E., Mireles, A., Reyes-Solis, I., Garcia-Calderon, N., Lagunas-Solar, M., . . . Flocchini, R. (2005). Distribution of heavy metals in plants cultivated with wastewater irrigated soils during different periods of time. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 241(1-4), 351-355.

Tabinda, A. B., Irfan, R., Yasar, A., Iqbal, A., & Mahmood, A. (2018). Phytoremediation potential of Pistia stratiotes and Eichhornia crassipes to remove chromium and copper. Environmental technology.

Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011.

Tricault, Y., Matejicek, A., & Darmency, H. (2018). Variation of seed dormancy and longevity in Raphanus raphanistrum L. Seed Science Research, 28(1), 34-40.

Vandenhove, H., Duquène, L., Tack, F., Baeten, J., & Wannijn, J. (2009). Testing the potential of enhanced phytoextraction to clean up NORM and heavy metal contaminated soils. Radioprotection, 44(5), 503-508. doi:10.1051/radiopro/20095093

Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38.

Warwick, S. I. (2011). Brassicaceae in agriculture. Genetics and Genomics of the Brassicaceae, 33-65.

Xie, Y., Fan, J., Zhu, W., Amombo, E., Lou, Y., Chen, L., & Fu, J. (2016). Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Frontiers in plant science, 7, 755.

Yamagishi, H. (2017). Speciation and diversification of radish. In The radish genome (pp. 11-30): Springer.

Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers in plant science, 11, 359.

Yuan, L., Guo, P., Guo, S., Wang, J., & Huang, Y. (2021). Influence of electrical fields enhanced phytoremediation of multi-metal contaminated soil on soil parameters and plants uptake in different soil sections. Environmental Research, 198, 111290.

Zahedi, A., Hosseini, B., & Fattahi, M. (2018). Effect of different concentration of colchicine on some morphological and phytochemical characteristics of Dracocephalum kotschyi Boiss. Journal of Plant Productions (Agronomy, Breeding and Horticulture), 40(4), 31-40.
##submissions.published##
2024-10-25
How to Cite
Simiyu, G., Sheriff, S., & Kinyua, M. (2024, October 25). Phytoremediation of Chromium and Lead-Contaminated Soil Using Putative Raphanus raphanistrum. African Journal of Education,Science and Technology, 8(1), Pg. 7-18. https://doi.org/https://doi.org/10.2022/ajest.v8i1.1057
##section.section##
Articles