

Effects of Integrated Soil Fertility Management Practices on Soil Micronutrients and Maize (*Zea Mays L.*) Yields in Semi-Arid, Kenya

S. W. Wamalwa*¹, Danga B.O. ¹ and Kwena K. ²
¹Department of Agricultural Science and Technology, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya

²Kenya Agricultural and Livestock Research Organization, P.O. Box 340 – 90100 Machakos

*Corresponding author email address: wanjala2002@gmail.com

Abstract

Declining per capita crop yield in Sub-Saharan Africa is linked to widespread depletion of soil micronutrients due to non-conventional cropping systems that disregard optimal replenishment on smallholder farming systems. Use of Integrated Soil Fertility Management (ISFM) quickly and cheaply improves the levels of micronutrients needed for health crop production. However, assessments on micronutrients retention and effect on crop yields of soils in Arid and Semi-Arid Areas (ASALs) after ISFM adoption remains unknown at community level. The study was conducted in the Mwania watershed in Machakos County, Kenya between 2016 and 2018 to determine the effect of selected ISFM practices on soil micronutrients and maize yields at watershed level. About eighty-one farmers were randomly sampled; Nine ISFM farmers were superimposed on each of selected nine ISFM practices that were distributed uniformly across the watershed. Data was collected on soil micronutrients and maize yields. The aforementioned variables of interest were analysed using a one-way analysis of variance (ANOVA) in GENSTAT software version 15.1 computer program. Treatment means were separated using Duncan's Multiple Range test (DMRT) tests owing to the large number of treatments. The results showed maize vields increased after ISFM use compared to control regardless of cropping system. Combining 2 t/ha animal manure with 40 kg/ha of di-ammonium phosphate (DAP) fertilizer and tied ridging on either maize/pigeon pea or maize sole crop recorded highest 1.32 t compared to 1.38 t/ha of maize grain yields respectively compared to 0.88 t/ha (control) in short rains. During long rains, maize/pigeon pea intercrop alone was the highest at 1.577 t compared to 0.83 t/ha of maize grain yield from maize sole crop neither with fertilizer, animal manure nor tied ridging (control). It also significantly (≤ 0.05) increased soil iron (Fe) levels from 15.99 ppm (control) to 24.74 ppm. This was attributed to 0.14 % increases in soil pH (water) compared to control after speedy mineralization and dissipation of soil organic matter, which enhanced Fe solubilisation. Subsequently promoting rapid maize crop growth, avoiding adverse weather conditions ahead. Therefore, farmers in semi-arid areas could achieve desired maize yields with only 50% less than recommended fertilizer rates with ISFM practices that may reverse declining soil micronutrients and improve crop yields quickly and cheaply.

Keywords: ISFM, Soil fertility, Soil micronutrients, Maize and semiarid areas

INTRODUCTION

Soil nutrient depletion remains a biophysical cause of declining crop yields per area in semiarid areas of Sub Saharan-Africa (Sanchez, 2019). Notably, common major limiting nutrients like nitrogen (N) and phosphorous (P) are well understood and eliminated through routine use of commercially formulated fertilizer. Soil micronutrients such as Manganese (Mn), Copper (Cu), Iron (Fe) and Zinc (Zn) have shown to improve efficiency of applied N and P by crops on non-responsive soil (Njoroge et al. 2018). Highly leached, organic, highly alkaline, over-cropped and intensively cultivated soils associated with smallholder farming system, especially across Kenyan semi-arid tend not to respond optimally to NPK's applied due to unreliable soil moisture but mainly deficient (Mwende et al. 2019). Plant yield depends on the amount of most scarce nutrient, therefore to maintain plant growth all essential nutrients are necessary, including micronutrients, which are known for their important role in chlorophyll biosynthesis, participates in many enzymatic reactions and functions as electron carrier in photosynthesis and respiration reactions. The world population is expanding and so is the demand for quality food in view of curbing hunger and malnutrition, therefore sustainable production of quality food that preserves the environment and natural resource base are vital.

Maize is a staple food and source of income to many households in semiarid areas of sub-Saharan Africa, however, decline in per capita maize yields is widespread among smallholders' farms. For instance, widening gap of 175 % between maize yields averaged from smallholder farms and obtained from surrounding on station and commercial farms in Kenya has been reported in the past decade, contrary to the global trend (Payne, 2010; Kwena et al. 2017; Mwende et al. 2019). Studies have attributed the root cause of declining per capita maize yields to climate variability but mainly widespread soil-micronutrient depletions (Oldman et al., 2017; Karaya, et al., 2012; Gachene, 2015; Sanchez, 2019). Soil with depleted nutrients is a poverty trap to many households in semi-arid regions because of widespread food insecurity and malnutrition resulting to a recurrent need for emergency food supply and increased dependency on food imports (Ngome et al., 2013; Karaya et al., 2012; Mucheru-Muna, et al., 2014; Itabariet al., 2011). On average, Kenya imports over 1.5 million bags of maize annually to meet its domestic demand (FAO, 2014). For instance, Nitrogen (N) and phosphorus (P) seriously limit crop yields (NAAIAP, 2014; Mwende et al. 2019), across the country and the situation is worse in semi-arid areas. For example, in Machakos County, soil levels for major nutrient such as N < 0.1% is lower than recommended 0.2 %, although P of 11 Cmol/kg and slightly acidic soil pH 5.2 (water) falls within recommended ranges for maize production, although extremely low soil organic matter (0.6 -1.25%) compromises resilience of semiarid soils to external shocks (Kisaka et al., 2016; Karuma et al., 2015; Itabari et al., 2013). Subsequently exposes over 12 million Kenyans who reside in this region to rampant malnutrition and abject poverty (KNBS 2018).

Mwende *et al.* (2019), recommended a basket of practices to be effective in reversing soil nutrient depletion and increasing crop yields in semiarid areas, however, widespread professional use by farmers is lacking. The reason cited is that majority of recommendations are too general and not only disregards the inherent soil variability, do not consider also diverse household adaptive power and the need for farm specific recommendations (Mugwe *et al.* 2008; Kwena *et al.* 2017), such as once from integrated soil fertility management (ISFM) strategy. The ISFM system entails an integrated management of social, economic, political, physical and chemical soil properties. The approach not only takes into consideration inherent soil variability

within the farming system, but also recognises household social and economic status as well as political aspects of land management. ISFM strategy advocates for the use of organic and inorganic nutrient sources at rates corresponding with the farmer's socioeconomic circumstances (Vanlauwe et al., 2015). Besides, organic residues that improve soil holding capacities, maximizes utilization of external inorganic nutrients applied by improved germ-plasm (Mwende et al. 2019). Incorporating legumes also pulverises the soil, retrieving leached soil micronutrients on top soil surface for utilization by shallow rooted crops (Kwena et al. 2017). That way, ISFM remains a suitable option for poor farmers with limited choices towards improving soil fertility and crop yields (Vanlauwe et al., 2015). However, ISFM use on household level remains a challenge due to intensive labor requirements and high initial cost (Mutuku et al. 2017). Many researchers have opted for landscape recommendations of ISFM practices, which gives choices to individual households to adopt practices that suit their household disposable income and desired yield goal. Although large area recommendations increased ISFM usages by smallholder farmers in Machakos and beyond (Kwena et al. 2018), concrete evidence on their effect on soil micronutrients and maize yields remains scarce. Consequently, affecting utilizations of this unique soil fertility improvement strategy at a very large scale to fight poverty and rampant food insecurity in Kenyan semiarid areas. Thus, the study to, (i) determine the effects of ISFM practices on soil micro nutrients (ii) Assess the effects of ISFM practices on maize yield at watershed level was conducted between 2016 and 2018.

MATERIALS AND METHODS

Study site description

Mwania watershed is located between 37⁰ 25' to 37⁰ 29' E and 1⁰ 55' S to 1⁰ 58' S, in Machakos County, Eastern Kenya as presented in Figure 1.

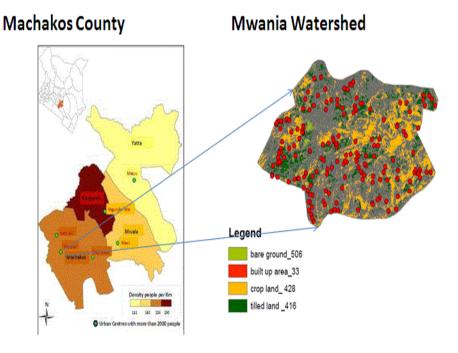


Figure 1: Location of Mwania watershed in Machakos County, with households earmarked in red dots (from survey 2016-unpublished)

Mwania watershed was picked as the study area because of receiving a basket of ISFM interventions suitable for semi-arid conditions in the past, its conspicuous agroecological and biophysical characteristics with undulating topography with slope variations of 2-20 %. Climate of Mwania watershed is cooler semi-arid climate, with highly erratic and unreliable bi-modal rainfall, with cropping patterns matching rainfall seasons, hence a representative of typical semi-arid. Planting is strictly done during rainfall onset and in case of any delay, a farmer could incur yield losses proportional with time delayed (Kwena et al. 2017). According to Jaetzold et al., (2006), farmers perceive short rains (October-November) as more reliable than long rains (March-May). Mean annual temperature 20° C, with lowest being 17 ° C and highest as 240 ° C annually, with February and September being hottest months. High evaporation rates (ETo), surpassing the amount of rainfall (r) apart from November. In a year mean evaporation rates range between 1820-1840 mm against evapotranspiration 1239 mm (Gicheru, 1996), hence yielding r/ETo of 0.57. The soils in study site are dominated by Luvisols (WRB, 2006; FAO/UNESCO., 1997), originating from granitic parent material, they are shallow, dusky, dark reddish brown to dark red and dark brown and dominated with quartz of sandy (WRB, 2006; FAO/UNESCO., 1997; Gicheru and Ita, 1987), with low soil organic matter < 2.41%, low in total N<0.15 %. However, soils in Mwania watershed are slightly acidic < pH 5.52, adequate levels of P > (30 ppm), K > (0.59 cmol/kg), Mg > (1.47 cmol/kg ppm) and Ca > 6.25 (cmol/kg) to nourish maize and pigeonpea without external replenishment (Kwena et al. 2017).

Field trials

Field trials were conducted for four seasons from the short rains of 2016 to the long rains of 2018. A total of 81 farms were selected for the study from across the entire watershed, based on the farmers' willingness to participate in the study (Figure 3). Majority of the farms were less than two hectares in size and most of them had been cultivating their fields continuously for over 10 years. Maize and pigeonpea were the main staple crops grown by farmers in Mwania watershed, either as sole crops or intercrop. Most of the farmers selected for this study either used inorganic fertilizers alone or combined inorganic fertilizers with manure to replenish soil nutrients. Majority of them also had constructed water harvesting structures such as tied ridges on their farms. A total of nine treatments were tested in this study and are summarized below in Table 1.

The ISFM practices were distributed uniformly across the watershed with coverage of 38.45 ha of cultivable land Figure 2, with varying farm sizes and treatments described in the Table 1. For every group, the researcher superimposed a single ISFM practice on 9 households spread randomly across the watershed. The farmers, however, asserted that recommended planting fertilizer triple super phosphate (TSP) was not available in the local markets; hence, they chose Di-ammonium phosphate (DAP), which is common in local markets as a source of both N and P. All farmers selected maize as the test crop because it is a staple food, responds well to external nutrients besides being a cash crop, and most farmers gave it priority when applying soil-improving inputs. A composite sample of cattle manure used in this study was analysed and chemical properties averaged and presented in Table 2.

Table 1: Summary of nine ISFM practices tested on 81 farms in Mwania watershed

Treatment ¹	Description
T_1	Maize sole crop + 0 kg ha ⁻¹ NP + 0 t ha ⁻¹ manure + No Tied ridging
T_2	Maize sole crop + $7.2 \text{ kg ha}^{-1} \text{ N} + 18.4 \text{ kg ha}^{-1} \text{ P} + \text{No Tied ridging}$
T_3	Maize sole crop + $7.2 \text{ kg ha}^{-1} \text{ N} + 18.4 \text{ kg ha}^{-1} \text{ P} + \text{Tied ridging}$
T_4	Maize sole crop + 7.2 kg ha ⁻¹ N + 18.4 kg ha ⁻¹ P + 2 t ha ⁻¹ Manure + No Tied
	ridging
T_5	Maize sole crop+ 7.2 kg ha ⁻¹ N + 18.4 kg ha ⁻¹ P + 2 t ha ⁻¹ Manure+ Tied ridging
T_6	Maize/ pigeon pea intercrop + 7.2 kg ha ⁻¹ N + 18.4 kg ha ⁻¹ P + NoTied ridging
T_7	Maize/ pigeon pea intercrop+ 7.2 kg ha ⁻¹ N + 18.4 kg ha ⁻¹ P + Tied ridging
T_8	Maize/ pigeon pea intercrop + 7.2 kg ha ⁻¹ N + 18.4 kg ha ⁻¹ P + 2 tha ⁻¹ Manure + No
	Tied ridging
T_9	Maize/ pigeon pea intercrop + tied ridges + 7.2 kg ha ⁻¹ N + 18.4 kgha ⁻¹ P + 2 t ha ⁻¹
	¹ Manure + Tied ridging

N= total nitrogen, $P=P_2O_5$

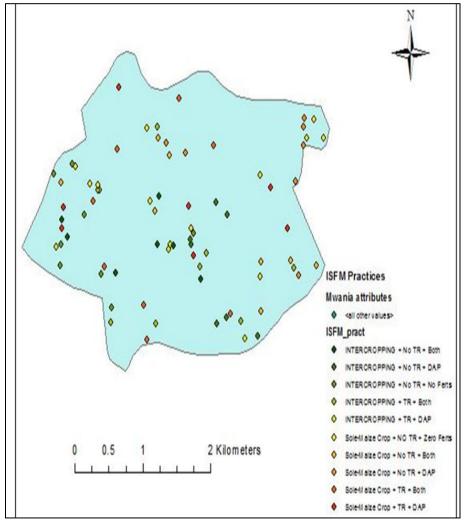


Figure 3: well distributed farms with respective ISFM practices across the Mwania watershed (survey 2016-unpublished)

Table 2: Chemical properties of manure used in the study

Parameters	Units	Level		
pН		8.83		
Ec (salts)	mS/cm	13.90		
Dry matter	%	92.90		
Carbon	%	19.20		
Total Nitrogen	%	1.48		
Phosphorus	%	1.60		
Potassium	%	2.69		
Calcium	%	4.99		
Magnesium	%	0.73		
Sulphur	%	0.37		
Sodium	ppm	2300		
Manganese	ppm	775		
Iron	ppm	8380		
Zinc	ppm	441		
Copper	ppm	106		
Boron	ppm	75.20		
C:N	-	13		

¹Average chemical properties of animal manure used during the study

The early maturing improved maize local variety from KALRO-Katumani was the most popular maize grown at the study site, therefore the improved local variety was selected and planted using recommended spacing of 75 × 30 cm, with expected grain yields of about 2 tons ha⁻¹ under researcher- managed trials (Kwena, 2018). The selected 9 farmers per ISFM practice across the study sites voluntarily tested the agreed practice and were ready to follow researcher instructions to achieve intended objectives. The farmers agreed that each farm hosting the trial will facilitate the researcher and other interested stakeholders to regularly visit the trial site and conveniently guide the farmers on appropriate standards of agronomic practices. Majority of farmers prepared their fields using ox-plough before onset of rainfall and followed by sowing during the first week of rainfall onset. For instance, during short rains (OND), sowing happened from mid to end of October, similarly during long rains (MAM) season sowing occurred mid-march up to the end with local variety purchased from KALRO-Katumani research station. At knee high, weeding was done to control weeds, while pest and disease control were well monitored, and for any incidence, it was recorded and considered during yield calculation.

Harvesting field trials

Fields were harvested when the entire maize stalks were completely dry at the end of every cropping season to avoid interference from farmers. The transect line and 25m^2 quadrant was used for maize yield sampling. The transect string was laid across the maize field and anchored on both ends. Areas avoided were end rows of the maize and areas affected by erosion or insect infestations. Sampling was done by walking along the line and looking straight down at the end and starting point for each transect string. The line was divided into stakes at an interval of between 50 m in a hectare. Maize crops inside the quadrant were harvested and necessary field measurement taken and a subsample of about 8 -10 stovers with cobs were reweight, harvested, chopped, and taken to the laboratory for further investigation. Cobs and stovers were air dried to constant weight, cobs shelled and weight measurements were taken on both stover and grains.to a constant weight and measurement taken. Yield measurements were computed at every end of cropping season and crop field measurements were used to compute total yield using formulas by (Bell, 1994).

Soil Sampling

At the end of 2018 long rains, soil samples were collected in a transect across each farm using 600cm³ soil auger at a depth of 20cm. About 18 soil augers per ha were mixed thoroughly inside the bucket before being quartered to obtain a representative sample. A composite sample of 0.5Kg was scooped and taken to the laboratory, air dried till dusty, grounded using a mortar and a pestle, passed through 2mm sieve and analysed for pH and soil micronutrients.

Soil analysis

Analysis of micronutrients was carried out on soil samples collected at the end of the experiment in 2018. Copper, Zinc, Iron and Manganese were determined using a chelating ethylenediaminetetraacetic acid (EDTA) procedure described by (Marschner, 2011).

Data analysis

Soil and maize data were subjected to one way analysis of variance (ANOVA) using GENSTAT software version 15.1 (Payne *et al*, 2013). Means were separated using Duncan's Multiple Range test (DMRT), owing to many treatments involved.

RESULTS AND DISCUSSIONS

Effect of ISFM practices on soil micro-nutrients

Results of soil pH (water) and micro-nutrient levels after four cropping seasons are presented below in Table 3. Generally, ISFM had significant ($p \le 0.05$) effect on Manganese (Mn), copper (Cu), and iron (Fe) irrespective of the cropping system. Farmers on maize-pigeon pea intercrop without tied ridging reported significantly highest soil levels of Mn (1.21 Cmolkg⁻¹), Cu (4.68ppm), Fe (87.67ppm) and Zn (7.47ppm) compared to control Mn (0.5939 Cmol kg⁻¹), Cu (1.163ppm), Fe (15.99ppm), Zn (5.507ppm).

Table 3: Mean comparison of soil trace elements after four seasons of the study

			Soil pH	and micro	nutrients
levels ¹					
ISFM Practices					
	Soil pH (H ₂ O)	Mn	Cu	Fe	Zn
		Cmol/kg	(ppm)	(ppm)	(ppm)
Maize + NoTR + O kg /ha NP + 0 kg /ha AM	6.296b	0.5939 b	1.163 b	15.99 e	5.507a
Maize + NoTR + $7.2 \text{ kg ha}^{-1} \text{ N} + 18.4 \text{ Kg ha}^{-1} \text{ P}$	6.486ab			48.62	
		0.8052 b	1.807 b	bcd	7.212a
Maize + TR + $7.2 \text{ kg ha}^{-1}\text{N} + 18.4\text{Kg ha}^{-1}\text{ P}$	6.524ab			51.84	
		0.6929 b	1.185 b	bc	5.4a
Maize + NoTR + $7.2 \text{ kgha}^{-1}\text{N} + 18.4\text{Kgha}^{-1}\text{P}$	6.618ab				
+AM		0.7993 b	2.167 b	54.74 b	6.508a
Maize + TR + $7.2 \text{ kg ha}^{-1}\text{N} + 18.4 \text{kg ha}^{-1}\text{P} + \text{AM}$	7.017a			24.97	
		0.7294 b	0.685 b	de	7.031a
Maize/PP + No TR + 7.2 kg ha ⁻¹ N + 18.4 kg ha ⁻¹	6.712ab			25.52	
¹ P		0.5917 b	0.779 b	de	9.004a
Maize/PP + TR + $7.2 \text{ kg ha}^{-1}\text{N}$ + $18.4 \text{ kg ha}^{-1}\text{P}$	6.392ab			34.63	
		0.6156 b	0.927 b	bcde	8.507a
Maize/ PP +NoTR +7.2 kg ha ⁻¹ N +18.4 kg ha ⁻¹	7.049a				
¹ P+AM		1.2082 a	4.681 a	87.67 a	7.472a
Maize/PP + TR +7.2 kg/ha ⁻¹ N+18.4 kgha ⁻¹	6.305b			24.74	
¹ P+AM		0.7327 b	0.847 b	cde	6.676a
Coefficient of variations (CV %)	9.4	39.30	91.30	62.30	59.50
p≤0.05	0.085^{ns}	0.001*	<0.001*		
				< 0.001*	0.648 ^{ns}

¹Avarage soil chemical properties (soil micronutrients), TR − tied ridging, NP − inorganic nitrogen and phosphorous, AM- animal manure. Data averaged from 9 farms per treatment, *Significant, ^{ns}not significant at p≤0.05, column means having common letters are not significantly different using DMRT test.

This was attributed to increases in soil pH (water) against 6.296 (control). According to Behera and Shukla, (2013), in India, soil micronutrients are pH dependent, thus at high pH (water) >6.8 crops may show deficiency symptoms of both nutrients since they precipitate out of soil solution and become unavailable for crop uptake. Results of this study agree with findings of Adeniyan and Ojeniyi, (2005) reported increases in soil nutrients in Nigeria after combining poultry manure and NPK 15-15-15, which the study attributed to rapid mineralization of soil organic matter from manure. Similarly, Kwena et al. (2017), reported increases in soil nutrients on top soil in Kenyan semiarid after ploughing back 4 t/ha of pigeonpea residue for 8 continuous cropping seasons. The study attributed increases of soil nutrients to rapid mineralization of crop residues, beside pigeonpea ability in pulverizing and retrieving leached nutrients (Abunyewa and Karbo, 2005). Equally, Kapkiyai et al. (1999) and Verde et al. (2013) reported solubilization of soil micronutrients when optimal soil pH (CaCl₂) between 5.5-6.0 is achieved on soils of Kenyan highlands that subsequent solubilized soil nutrients such as trace elements which are pH dependent. Likewise, Ngetich et al. (2014) reported increases in clay and organic matter on tied ridges which translates to improved soil holding capacity of both soil micronutrients and scarce soil moisture (Mwende et al. 2019). From above discussion, ISFM with a basket of manure showed liming effect, inorganic fertilizer provided much needed N and tied ridging obstructed clay and less of sand soil around roots of growing crops. The study also reported increased Fe²⁺ in the soil which can be attributed to clay adsorption of retrieved Fe by tap rooted pigeonpea, overcoming Fe deficiencies which may obstruct important enzymatic reactions and biosynthesis of chlorophyll leading to general poor health of maize crop (Terry and Abadía, 1986).

Maize yields responses to ISFM options

Results of maize grain and stover yields obtained from various ISFM interventions after four cropping seasons are presented below in Table 4.

Table 4: Maize yield comparison on selected ISFM practices after four consecutive seasons

ISFM practices	Yields (t/ha) ¹				
•	Short Rains (SR)		Long Rai	ns (LR))
	Grain	Stover	Grain		Stover
Maize + NoTR + 0kgha ⁻¹ NP + 0kgha ⁻¹ (2)- control	0.879	1.596	0.83		1.493
Maize + NoTR + $7.2 \text{ kgha}^{-1}\text{N} + 18.4 \text{ Kgha}^{-1}\text{ P}$ (5)	1.21	1.967	1.296		1.93
Maize + TR + $7.2 \text{ kgha}^{-1}\text{N} + 18.4 \text{ Kgha}^{-1}\text{ P }(9)$	1.375	2.219	1.381		2.372
Maize + NoTR + $7.2 \text{ kgha}^{-1}\text{N} + 18.4 \text{ Kgha}^{-1}\text{P} + \text{AM}$ (4)	1.022	1.652	1.353		2.136
Maize + TR + $7.2 \text{ kg ha}^{-1}\text{N} + 18.4 \text{ kg ha}^{-1}\text{P} + \text{AM}$ (3)	0.991	2.023	1.176		1.93
Maize/PP + No TR + $7.2 \text{ kg ha}^{-1}\text{N} + 18.4 \text{ kg ha}^{-1}\text{P}$ (1)	0.847	1.263	1.147		1.679
Maize/PP + TR + $7.2 \text{ kg ha}^{-1}\text{N} + 18.4 \text{ kg ha}^{-1}\text{P}$ (7)	1.283	1.906	1.473		2.259
Maize/ PP +NoTR +7.2 kg ha ⁻¹ N +18.4 kg ha ⁻¹ P+AM					
(6)	1.233	1.917	1.362		2.369
Maize/PP + TR +7.2 kg/ha $^{-1}$ N+18.4 kgha $^{-1}$ P+AM (8)	1.323	2.067	1.577		2.477
Grand mean	1.13	1.85	1.29		2.07
Coefficient of variations (CV %)	54.30	51.10	58.30		51.50
p≤ 0.05	0.495^{ns}	0.552^{ns}	0.643 ^{ns}		0.523^{ns}
Total Rainfall (mm)	317	317		882	882

¹Averages of maize yields, TR – tied ridging, NP – inorganic nitrogen and phosphorous, AM-

Generally, ISFM practices had no significant < 0.05 effect on maize yield. Farmers who planted maize sole crop on tied ridging with combination of animal manure and inorganic fertilizer reported higher maize grains and stover 1.38t and 1.596 t/ha, followed by 1.32t and 2.067 t/ha from farmers who intercropped maize pigeonpea on tied ridging combined manure and inorganic fertilizer on tied ridging compared to 0.879 t/ha (control) in short rains. Similarly, during long rains, farmers who planted maize as sole crop with combination of manure and fertilizer obtained maize grain and stover 1.382 t and 2.372 t/ha, while farmers who intercropped maize and pigeon pea with combined manure and fertilizer on tied ridging recorded 1.577 t/ha of maize grain and 2.477 t/ha of maize stover yield compared to 0.83 t/ha of maize grain and 1.493 t/ha of stover yield reported on control. Insignificant increases compared to control in maize yield at the end of the study on farms that combined manure and inorganic fertilizer on tied ridging was attributed to adequate rains received both in short and long rains during the study period and low amounts of manure and fertilizer applied.

The study findings match those of Bationo *et al.* (1997), who reported an increase in maize yield from 0.885 t ha⁻¹ in low input cropping system to 2.8 t ha⁻¹ after ISFM adoption in Mali. Similarly, Agegnehu *et al.* (2014) in Ethiopian highland, reported increases by 151 % after applying 60 kg ha⁻¹ N and 20 kg ha⁻¹ P integrated with 50 % N source of equivalent manure on wheat. A similar trend was observed by Mwende *et al.* (2019) in semi-arid eastern Kenya, where the study reported 650 % maize yield increases after combining 5 t ha⁻¹ manure and 20 kg ha⁻¹ inorganic N fertilizer on tied ridging. Equally, the study findings agree with Wanderi *et al.* (2011) who reported 15 and 30 % maize grain and stover yield increases respectively, in Thika near Nairobi, under maize-pigeon pea long term experiment and other authors; Mapfumo and Mtambanengwe, (2004), Rao and Mathuva, (2000), Abunyewa and Karbo, (2005) and Kwena, (2018), attributed increases in maize yields to improved soil fertility. It is apparent from the study that maize yield semi-arid not only flourish with abundance of soil moisture but also micronutrients.

CONCLUSION AND RECOMMENDATIONS

It is apparent from this study that ISFM on a landscape level can reverse declining soil fertility and increase maize yield at only a half of current recommended rates. Therefore, maize- pigeon pea intercrop crop plus tied ridging with 2 t ha⁻¹ of manure mixed with 40 kg ha⁻¹ of DAP offers the better option since it gave the highest maize yield long-term. However, we recommend economic analysis of tested practices before being used for future validations and experimental planning, besides linking study results with poverty data using GIS technology which becomes appealing to policy makers instead of usual tables and charts for upscaling purposes.

ACKNOWLEDGEMENT

The authors would like to express their deepest gratitude to the Director General of the Kenya Agricultural and Livestock Research Organization through the World Bank-supported Improving Agricultural Water Productivity project for extending a grant to carry out this research work. Thanks to the Department of Agricultural Resource Management of Kenyatta University for technical support. We also thank the following KALRO staff: Reuben Ruto, Mr. Elias Thuranira and Stephen Muindi in Geographical Information Systems (GIS), biometrics and soil sampling respectively. We also thank farmers from Mwania watershed in Machakos County for participating in this research.

REFERENCES

- Abunyewa, A. A., and Karbo, K. N. 2005. "Improved fallow with pigeon pea for soil fertility improvement and to increase maize production in a smallholder crop—livestock farming system in the subhumid zone of Ghana." *Land degradation and development* 16(5), 447-454.
- Adeniyan, O. N., and Ojeniyi, S. O. 2005. "Effect of poultry manure, NPK 15-15-15 and combination of their reduced levels on maize growth and soil chemical properties." Nigerian Journal of Soil Science 15, 34-41.
- Adu-Gyamfi, J. J., Myaka, F. A., Sakala, W. D., Odgaard, R., Vesterager, J. M., and Høgh-Jensen, H. 2007. "Biological nitrogen fixation and nitrogen and phosphorus budgets in farmer-managed intercrops of maize-pigeonpea in semi-arid southern and eastern Africa." *Plant and soil* 295(1-2), 127-136.
- Ariga, J., Jayne, T. S., and Njukia, S. 2010. Staple food prices in Kenya. (No. 1093-2016-87972).
- Atuhaire, A. M., Mugerwa, S., Kabirizi, J. M., Okello, S., and Kabi, F. 2014. "Production Characteristics of Smallholder Dairy Farming in the Lake Victoria Agro-ecological Zone Uganda." *Front. Sci*, 2014, 4(1), pp.1-8.
- Bationo, A., and Waswa, B. S. 2011. "New challenges and opportunities for integrated soil fertility management in Africa." *In Innovations as key to the green revolution in Africa* (pp. 3-17). Springer, Dordrecht.
- Bationo, A., Waswa, B., Okeyo, J. M., Maina, F., Kihara, J., and Mokwunye, U. (Eds.). 2011. Fighting poverty in sub-Saharan Africa: the multiple roles of legumes in integrated soil fertility management. Springer Science and Business Media.
- Behera, S. K., and Shukla, A. K. 2013. "Depth-wise distribution of zinc, copper, manganese and iron in acid soils of India and their relationship with some soil properties." *Journal of the Indian society of Soil Science* 61(3), 244-252.
- Bekeko, Z. 2013. "Improving and sustaining soil fertility by use of enriched farmyard manure and inorganic fertilizers for hybrid maize (BH-140) production at West Hararghe zone, Oromia, Eastern Ethiopia." *African Journal of Agricultural Research* 8(14), 1218-1224.
- Botchway, V. A., Sam, K. O., Karbo, N., Essegbey, G. O., Nutsukpo, D., Agyemang, K., ... and Partey, S. T. 2016. Climate-Smart Agricultural Practices in Ghana.
- Bremner, J. M., Mulvaney, C. S., Page, A. L., Miller, R. H., and Keeney, D. R. 1982. "Nitrogen-total." In Methods of Soils Analysis. Part 2. Chemical and Microbiological Properties and Microbiological Properties, Second Edition,, by A.L, Miller, R.H. and Keeney, D.R. (eds) Page, 595-624. Soil Science Society of America. USA.
- Chirwa, P. W., Black, C. R., Ong, C. K., and Maghembe, J. 2006. "Nitrogen dynamics in cropping systems in southern Malawi containing Gliricidia sepium, pigeonpea and maize." Agroforestry Systems, 67(1), 93-106.
- FAO/UNESCO. 1997. Soil Map of the World. Revised Legend. World Soil Resources. Report 60. FAO: Rome. 41 p.
- Food and Agricultural Organization (FAO) Faostat, F. 2014. Food and Agriculture Organization. Feb. Rome.www.faostat.org.
- Gachene, C. K., Karuma, A. N., and Baaru, M. W. 2015. "Climate change and crop yield in sub-Saharan Africa." In *In Sustainable Intensification to Advance Food Security and Enhance Climate Resilience in Africa*, pp. 165-183. Springer, Cham.
- Geta, E., Bogale, A., Kassa, B., and Elias, E. 2013. "Determinants of Farmers' Decision on Soil Fertility Management Options for Maize Production in Southern Ethiopia." American Journal of Experimental Agriculture 3(1), 226.
- Gicheru, P. T. 1996. Detailed Soil Survey of Three Newly-opened Farms in Kathekakai Co-operative Society Farm (Section B) in Konza Region, Machakos District (No. D73). Report.
- Gicheru, P. T., and Ita, B. N. 1987. Soils of Katumani Dryland Farming Research, Station (No. D41). Kenya Soil Survey Report.
- Havlin, J. L., Tisdale, S. L., Nelson, W. L., and Beaton, J. D. 2016. Soil fertility and fertilizers. Pearson Education India.
- Ibraimo, N., and Munguambe, P. 2007. Rainwater harvesting technologies for small scale rainfed agriculture in arid and semi-arid areas. Waternet Project, South Africa, PC17.
- Itabari, J. K., Kwena, K., Esilaba, A. O., Kathuku, A. N., Muhammad, L., Mangale, N., and Kathuli, P. 2011. "Land and water management research and development in arid and semi-arid lands of Kenya." *In Innovations as key to the green revolution in Africa* (pp. 427-438). Springer, Dordrecht.
- Itabari, J. K., Kwena, K., Esilaba, A. O., Kathuku, A. N., Muhammad, L., Mangale, N., and Kathuli, P. 2011. "Land and water management research and development in arid and semi-arid lands of Kenya." In *Innovations as key to the green revolution in Africa*, 427-438. Springer, Dordrecht.
- Jaetzold, R., Schmidt, H., Hornetz, B., and Shisanya, C. 2006. Farm management handbook of Kenya Vol. II: Natural conditions and farm management information Part C East Kenya Subpart C1 Eastern Province. Cooperation with the German Agency for Technical Cooperation (GTZ).

- Jama, B., Harawa, R., Kiwia, A., Rarieya, M., Kimani, D., Zeila, A., and Scarpone, J. 2013. "Improving soil health in Africa: Challenges and promising solutions." In *Africa Agriculture Status Report: Focus* on Staple Crops, 44-50. Nairobi, Kenya: Alliance for a Green Revolution in Africa (AGRA).
- Kapkiyai, J. J., Karanja, N. K., Qureshi, J. N., Smithson, P. C., and Woomer, P. L. 1999. "Soil organic matter and nutrient dynamics in a Kenyan nitisol under long-term fertilizer and organic input management." Soil Biology and Biochemistry 31(13), 1773-1782.
- Karaya, H., Njoroge, K., Mugo, S. N., Ariga, E. S., Kanampiu, F., and Nderitu, J. H. 2012. "Determination of levels of Striga germination Stimulants for maize gene bank accessions and elite inbred lines." nternational Journal of plant production, 6(2), 209-224.
- Karuma, A., Mtakwa, P., Amuri, N., Gachene, C. K., and Gicheru, P. 2014. "Tillage effects on selected soil physical properties in a maize-bean intercropping system in Mwala District, Kenya." International scholarly research notices, 2014 (International scholarly research notices).
- Kathuli, P., and Itabari, J. K. 2015. "In situ soil moisture conservation: utilization and management of rainwater for crop production." In *In Adapting African Agriculture to Climate Change*, 127-142. Springer, Cham.
- Kenya National Bureau of Statistics. 2009. *The 2009 Kenya population and housing census (Vol. 1)*. Nairobi: Kenya National Bureau of Statistics, 2010.
- Kisaka, M. O., Mucheru-Muna, M., Ngetich, F. K., Mugwe, J. N., Mugendi, D. N., Mairura, F., and Muriuki, J. 2016. "Using APSIM-model as a decision-support-tool for long-term integratednitrogen-management and maize productivity under semi-arid conditions in Kenya." Experimental Agriculture, 52(2), 279-299.
- Kisinyo, P., Othieno, C., Gudu, S., Okalebo, J. R., Opala, P. A., Maghanga, J. K., ... and Ogola, B. O. 2015. "Effects of lime, phosphorus and rhizobia on Sesbania sesban performance in a Western Kenyan acid soil." *African Journal of Agricultural Research* Vol. 7(18), pp. 2800-2809.
- KNBS. 2018. Economic survey 2018. Nairobi: Kenya National Bureau of Statistics.
- Kwena K. M. 2018. Contribution of pigeonpea (Cajanus cajan L. Millsp.) to soil fertility and productivity of maize (Zea mays L.) cropping systems in semi-arid Kenya - Doctoral dissertation,. (UNIVERSITY OF NAIROBI).
- Kwena, K. M., Ayuke, F. O., Karuku, G. N., and Esilaba, A. O. 2017. "The curse of low soil fertility and diminishing maize yields in sem-arid Kenya: Can Pigeonpea play saviour?" *Tropical and Subtropical Agroecosystems*, 20(2).
- Kwena, K., Ademe, F., Serge, J., Asmerom, N., Musana, B., Razakamiaramanana, R., ... and Esilaba, A. 2018. "Bringing Climate Smart Agriculture to Scale: Experiences from the Water Productivity Project in East and Central Africa." Climate Resilient Agriculture: Strategies and Perspectives 157.
- Leigh, B., Pelletier, B., Kamau, G., Kimberly, B., Murithi, F., Maina, I., Bukania, Z., Muhammad, L., Kristen Lowitt, K. and Hickey, G. 2014. Enhancing Ecologically Resilient Food Security through Innovative Farming Systems in the Semi-Arid Midlands of Kenya. IDRC Project #106510, A project of Kenya Agricultural Research Institute and McGill University in Machakos, Makueni and Tharaka-Nithi Counties, Kenya. Final Technical Report.
- Magnani, R. . 1999. Sampling guide. Food Security and Nutrition Monitoring (IMPACT) Project.
- Manna, M. C., and Singh, M. V. 2001. "Long-term effects of intercropping and bio-litter recycling on soil biological activity and fertility status of sub-tropical soils." *Bioresource technology*, 76(2), 143-150.
- Mapfumo, P., and Mtambanengwe, F. 2004. "Base nutrient dynamics and productivity of sandy soils under maize pigeonpea rotational systems in Zimbabwe." Managing Nutrient Cycles to Sustain Soil Fertility in Sub-Saharan Africa 225238.
- Miriti, J. M., Esilaba, A. O., Bationo, A., Cheruiyot, H., Kihumba, J., and Thuranira, E. G. 2007. "Tied-ridging and integrated nutrient management options for sustainable crop production in semi-arid eastern Kenya." In Advances in Integrated Soil Fertility Management in sub-Saharan Africa: Challenges and Opportunities, 435-442. Springer, Dordrecht.
- Mkonda, M. Y., and He, X. 2018. "Accumulation of SOC under organic and no-fertilizations, and its influence on crop yields in Tanzania's semiarid zone." *Ecosystem Health and Sustainability*, 4(2), 34-47.
- Mucheru-Muna, M., Mugendi, D., Kung'u, J., Mugwe, J., and Bationo, A. . 2007. "Effects of organic and mineral fertilizer inputs on maize yield and soil chemical properties in a maize cropping system in Meru South District, Kenya. ." *Agroforestry Systems* 69(3), 189-197.
- Mucheru-Muna, M., Mugendi, D., Pypers, P., Mugwe, J., Kung'u, J., Vanlauwe, B., and Merckx, R. 2014.
 "Enhancing maize productivity and profitability using organic inputs and mineral fertilizer in central Kenya small-hold farms." Experimental Agriculture, 50(2), 250-269.
- Mugwe, J., Mugendi, D., Kungu, J., Muna, M.M., 2008. "Maize yields response to application of organic and inorganic input under on-station and on-farm experiments in central Kenya." *Expl. Agric* 45, 47-59
- Mugwe, J., Mugendi, D., Mucheru-Muna, M., Merckx, R., Chianu, J., and Vanlauwe, B. 2009. "Determinants of the decision to adopt integrated soil fertility management practices by smallholder farmers in the central highlands of Kenya." Experimental agriculture 45(1), 61-75.

- Mugwe, J., Ngetich, F., and Otieno, E. O. 2019. "Integrated Soil Fertility Management in Sub-Saharan Africa: Evolving Paradigms Toward Integration."
- Mutuku, M. M., Nguluu, S., Akuja, T., Lutta, M., and Pelletier, B. 2017. "Factors that influence adoption of integrated soil fertility and water management practices by smallholder farmers in the semi-arid areas of eastern Kenya." *Tropical and Subtropical Agroecosystems*, 20(1).
- Mwende, N., Danga, B. O., Mugwe, J., and Kwena, K. 2019. "Effect of Integrating Tied ridging, Fertilizers and Cropping Systems on Maize Performance'in Arid and Semi-Arid Lands of Eastern Kenya." African Journal of Education, Science and Technology 5(2), 87-104.
- National Accelerated Agricultural inputs Access Programme (NAAIAP). 2014. "Soil sutability evaluations for maize production in Kenya. A report by National Accelerated Agricultural inputs Access Programme (NAAIAP) in Collaboration with Kenya Agricultural Reasearch Institute (KARI) Department of Kenya soil Survey Kilimo." Nairobi,.
- Nelson, D. W., and Sommers, L. 1982. "Total carbon, organic carbon, and organic matter." In Methods of soil analysis. Part 2. Chemical and microbiological properties (methodsofsoilan2), 539-579.
- Ngetich, K. F., Diels, J., Shisanya, C. A., Mugwe, J. N., Mucheru-Muna, M., and Mugendi, D. N. 2014. "Effects of selected soil and water conservation techniques on runoff, sediment yield and maize productivity under sub-humid and semi-arid conditions in Kenya." *Catena*, 121, 288-296.
- Ngome, A. F., Becker, M., Mtei, M. K., and Mussgnug, F. 2013. "Maize productivity and nutrient use efficiency in Western Kenya as affected by soil type and crop management." *International Journal of Plant Production* 7(3), 517-536.
- Nguluu, S. N., Karanja, J., Kimatu, J. N., Gicheru, P. T., Musimba, N., Njiru, E., ... and Nzombe, N. N. 2014. "Refining Dryland Farming Systems as a Means of Enhancing Agro diversity and Food Security in Eastern Kenya: A review." Journal of Advances in Agriculture 3(1), 142-149.
- Njarui, D. M. G., Kabirizi, J. M., Itabari, J. K., Gatheru, M., Nakiganda, A., and Mugerwa, S. 2012. "Production characteristics and gender roles in dairy farming in peri-urban areas of Eastern and Central Africa." Livestock Research for Rural Development, 24(7), 2012.
- Njoroge, R., Otinga, A. N., Okalebo, J. R., Pepela, M., and Merckx, R. 2018. "Maize (Zea mays L.) response to secondary and micronutrients for profitable N, P and K fertilizer use in poorly responsive soils." *Agronomy* Agronomy.
- Nziguheba, G., Zingore, S., Kihara, J., Merckx, R., Njoroge, S., Otinga, A., ... and Vanlauwe, B. 2016. "Phosphorus in smallholder farming systems of sub-Saharan Africa: implications for agricultural intensification." *Nutrient cycling in agroecosystems* 104(3), 321-340.
- Ogada, M. J., Mwabu, G., and Muchai, D. 2014. "Farm technology adoption in Kenya: a simultaneous estimation of inorganic fertilizer and improved maize variety adoption decisions." *Agricultural and food economics*, 2(1), 12.
- Okalebo, J. R., Gathua, K. W., and Woomer, P. L. 2002. Laboratory methods of plant and soil analysis: a working manual. TSBF-UNESCO, Nairobi, Kenya.
- Okwach, G. E., and Simiyu, C. S. 1999. "Evaluation of Long-Term Effects of Management on Land Productivity in a Semi Arid Area of Kenya Using Simulation Models." *East African Agricultural* and Forestry Journal, 65(1-2), 143-155.
- Oldeman, L. R., Hakkeling, R. T. A., and Sombroek, W. G. 2017. World map of the status of human-induced soil degradation: an explanatory note. International Soil Reference and Information Centre.
- Olsen, S.R. and Sommers, L.E. 1982. "Phosphorus." In *Methods of Soil Analysis, Part 2-Chemical and Microbiological Properties, 2nd ed*, by A.L, Miller, R.H. and Keeney, D.R. (eds) Page, 403-427. Soil Science Society of America USA.
- Onyango, C. M., Harbinson, J., Imungi, J. K., Shibairo, S. S., and van Kooten, O. 2012. "Influence of organic and mineral fertilization on germination, leaf nitrogen, nitrate accumulation and yield of vegetable amaranth." *Journal of plant nutrition* 35(3), 342-365.
- Payne, R. W., Welham, S. J., and Harding, S. A. 2013. A guide to REML in Genstat® for WindowsTM 15th Edition Introduction. VSN International, UK.
- Payne, W. A. 2010. "Farming systems and food security in sub-Saharan Africa." In *Advances in Soil Science*, by Eds R. Lal and BA Stewart, 23-56. Taylor and Francis.
- Rached, E., Brooks, D., and Rathgeber, E. M. (Eds.). 1996. Water management in Africa and the Middle East: Challenges and opportunities. IDRC.
- Rao, M. R., and Mathuva, M. N. 2000. "Legumes for improving maize yields and income in semi-arid Kenya." *Agriculture, ecosystems and environment,* 78(2), 123-137.
- Reij, C., Scoones, I., and Toulmin, C. 2013. Sustaining the soil: indigenous soil and water conservation in Africa. Routledge.
- Rhoades, J. D. 1982. "Soluble salts." *Methods of soil analysis. Part* (American Society of Agronomy. Madison, USA) 2(2), 167-178.
- Sakala, W. D., Kumwenda, J. D., and Saka, A. R. 2003. "The potential of green manures to increase soil fertility and maize yields in Malawi." *Biological agriculture and horticulture* 21(2), 121-130.
- Sanchez, P. A. 2019. *Properties and Management of Soils in the Tropics*. Cambridge University Press, 2019. Singh, V. K., Dwivedi, B. S., Shukla, A. K., Chauhan, Y. S., and Yadav, R. L. 2005. "Diversification of rice
- Singh, V. K., Dwivedi, B. S., Shukla, A. K., Chauhan, Y. S., and Yadav, R. L. 2005. "Diversification of rice with pigeonpea in a rice—wheat cropping system on a Typic Ustochrept: effect on soil fertility, yield and nutrient use efficiency." Field Crops Research 92(1), 85-105.

- Snapp, S. S., and Silim, S. N. 2002. "Farmer preferences and legume intensification for low nutrient environments. In Food security in nutrient-stressed environments." In *Food security in nutrient-stressed environments: Exploiting plants' genetic capabilities*, 289-300. Springer, Dordrecht.
- Terry, N., and Abadía, J. 1986. "Function of iron in chloroplasts." *Journal of Plant Nutrition* 9(3-7), 609-646
- Vanlauwe, B., Descheemaeker, K., Giller, K. E., Huising, J., Merckx, R., Nziguheba, G., ... and Zingore, S. 2015. "Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation." Soil, 1(1), 491-508.
- Verde, B. S., Danga, B. O., and Mugwe, J. N. 2013. "Effects of manure, lime and mineral P fertilizer on soybean yields and soil fertility in a humic nitisol in the Central Highlands of Kenya." *International journal of Agricultural science research*, 2(9), 283-291.
- WRB, I. W. G. 2006. "World reference base for soil resources." World soil resources reports, 103, 1-128.