Evaluation of growth responses of CassavaTreated with *Pleurotus tuber-regium*Spent Mushroom Substrate WaterExtract to Elicit Disease Resistance.

Okere, S.E

Department of Crop Science and Technology Federal University of Technology PMB 1526 Owerri, Imo State, Nigeria samchezo@yahoo.com

Elenwo, E.N.

Department of Plant Science and Biotechnology, University of Port Harcourt, PMB 5323 Rivers State, Nigeria Ataga, A.E

Department of Plant Science and Biotechnology, University of Port Harcourt, PMB 5323 Rivers State, Nigeria

Ekpe, I.I.

Department of Soil Science and Technology, Federal University of Technology PMB 1526 Owerri, Imo State, Nigeria ibiamik@yahoo.com

ABSTRACT

This paper investigated the effect of Pleurotus tuber-regiumspentmushroom substrate water extract on the growthof cassava generatedthrough meristem tissue culture. The cassava plantlet (tms 98/0505) were generated at the Tissue Culture Laboratory of Biotechnology unit, National Root Crop Research Institute, Umudike Umuahia Abia State before they were transfered to the screen house of the Faculty of Agriculture Teaching and Research Farm, University of Port Harcourt, RiversState. The water extract was applied on the cassavato elicit disease resistance after 4 months of culturing in a nutrient medium. The treatments for this investigation comprised of T1; Pleurotus tuber-regium water extract spent mushroom substrate (PTWESMS), T2;Pleurotus tuber-regiumautoclaved water extract spent mushroom substrate (PTAWESMS) and T3; the control. The experiment was laid outin a completely randomized design with 3 replicates. The data generated were subjected to analysis of variance (ANOVA). Means were separated using Fishers Least SignificantDifference at P=0.05. The results obtained revealedthatthere was no significant differencewhenthe different treatments were compared withe the control and when the treatments were compared with one another in theirmean plant height, meannumber of leaves, mean number ofnode and meanleaf area. However, the stem diameterandnumber of internode were significantly different. The result also revealed a significantly positive corelation (r) between plant height andstem diameter and a positive correlation between the number of internodes and leaf area and had a negativecorrelation between number of leaves and number of nodes. Nnumber of leavescorrelatednegatively with plant height, stem diameter and leaf area and corelated positively with number of internode and number of nodes. Again, the stem diameter had a significantly positive correlation with plant height, number of internode, and leaf area and a positive relationship with Number of node. Number of internode correlates positively with all the parameters evaluated. Number of nodes related positively with number of leaves, stem diameter and number of internode while a negative correlation with plant height andleaf area was observed. This could possibly be the first account of this investigation.

Keywords: Tissue culture, Pleurotus tuber-regium, mushroom, substrate

INTRODUCTION

Inrecent decades, a greater knowledge of chitin chemistry, and the increased availability of chitin —containingwaste materials have led to the testing and development of chitin —containing products for a wide variety of applications in the Agricultural industry. In addition to direct effects on plant nutrition and plant growth stimulation, Chitin —derived products have also been shown to be toxic to plant pests and pathogens, induce defenses and stimulate the growth and activity of beneficial microbes (Russel, 2013).

After cellulose, Chitin is the second most abundant polysaccharide on the planet (Gooday, 1990). Chitin is found in, and can be sourced from a variety of different organisms, with the notable exceptions of higher plants and vertebrate animals. Chitin – rich animals' tissues include the exoskeletons of arthropods (including insects, crutaceans and arachnids). The beaks of cephalopodsand the eggs and gut linings of nematodes (Gohel, 2006). Various microbs also produce chitin in cell walls, membranes and spores, including fungi (Castro, 2012). As is the case with the cellulose in plants cell walls, the Chitin polysaccharides is combined with other compounds to producestrengthened tissues. Both polysaccharides form microfibrils which differ in length and construction depending on the species and cellular location (Bowman and Leong, 2006). In fungi this involves cross linkages to glucan polymers to create a meshed hyphalwall (Jayakumar, Prabaharan, Nair and Tamura, 2010; Towheed, Anastassiades, Shea, Houpt, Welch,

and Hochberg, 2001). Due to the involvement of other polymers, such as glucans, the chitin content of fungal cell walls ranges from 22-40% (Pillai, Paul and Sharma 2009). The cationic properties of the chitosan oligosaccharide imbue it with unique properties that can be exploited by biotechnologists and physicians (Towheed, Anastassiades, Shea, Houpt, Welch, Hochberg, 2001), Material science, and Crop Science (Ramirez, Rodriguez, Alfonso and Peniche, 2010). Chitin, Chitosan and Glucosamine have all been experimentally trialed on Crop Plants with a range of beneficial agronomical responses recorded. These include direct antibiosis against Pests and Pathogens of Crops, enhancement of beneficialmicrobes both in Plants defense responses against biotic stress, and up-regulation of Plant growth, development, nutrition and tolerance to abiotic stresses.

According to the FAO (2008), the global production of cultivated edible mushrooms had increased from 2.26 million tons in 1998 to 3.48 millon tons in 2008. Despite the evident benefits of mushrooms, the exponential increase in their consumption worldwide is also generating a high volume of Spent Mushroom Substrate (SMS). It has been reported that about 5kg of substrate are needed to produce 1kg of Mushroom (Williams, McMullan, and McCahey, 2001; Uzun, 2004; Finney, Ryu, Sharifi, and Swithenbank, 2009), and about 17 million tons of SMS are produced each year. Consequently, one of the main problems facedby Mushroom production companies is finding a way to properly dispose of the SMS without contaminating the soil and water. In fact, the lack of a sustainable waste management solution for SMS is the most significant barrier to the future development of the mushroom industry (Finney, et al 2009). Several studies have been carried out to demonstrate the benefits of SMS application in mushroomrecultivation, enrichment of soil, restoring areas that have been destroyed through development, deforestation or environmental contamination (Sanchez, 2004), cultivation of vegetables, fruits and flowers in green houses and fields (Medina, Paredes, Perez-Murcia, Bustamante, and Moral, 2009; Polat, Uzun, Topcuoglu, Onal, Onus and Karaca, 2009; Ribas, Mendoca, Camelini, and Soares, 2009), and soil amendment and degradation of organopollutants(Semple, Reid, and Fermor, 2001;Lau, Tsang, and Chiu, 2003). The SMS can also be used as a potential energy feedstock (Williams et al. 2001; Finney et al. 2009), and ethanol production (Hideno, Aoyagi, Isobe, and Tanaka, 2007).

Cassava (Manihot esculenta Crantz) is a shrub 1-5m high which is cultivated for its starch –containing tuberous roots (Cock, 1985). One of the greatest problems confronting this all important crop in Africa is cassava mosaic disease (CMD). This disease is caused by the viruses-African cassava mosaic virus (ACMV) and East African cassava mosaic virus (EACMV). They are transmitted by the whitefly Bemisia tabaci. Presence of these viruses can causeyield losses of up to 40 -50% oftotal yield in cassava throughout the Continent (Cock, 1985; Thresh, Fargette and Otim-Nape, 1994; Otim-Nape, Thresh, and Fargette, 1996).

The primary aim of this research is to investigate the effect of Pleurotus tuber -regium Spent Mushroom substrate autoclaved/unautoclaved water extract on growth and growth parameters of cassava generated through Meristem tip tissue culture applied after 4 months of culturing.

MATERIALS AND METHOD

STUDY SITE AND SOURCE OF TEST CROP

Cassava variety (TMS 98/0505) used in this experiment were obtained from the Eastern Farm of National Root Crop Research Institute Umudike, UmuahiaAbia State Nigeria. The cassava cuttings with about 3-4 nodes were planted in buckets filled with sawdust and placed in a shade and watered periodically. The cuttings were kept at room temperature for about 2 weeks until the apical buds of the sprouted shoots were excised and aseptically cultured according to the method prescribed by Murashige and Skoog (1962) at the tissue culture laboratory, National Root Crop Research Instituteof Nigeria, Umudike Umuahia Abia State.

PREPARATION OF MUSHROOM SUBSTRATE

Spent mushroom substrate used for this study was obtained from Dilomat Farms and Services located at the Faculty of Agriculture, Rivers State University of Science and Technology, Port Harcourt, Rivers State. The Pleurotus tuber-regiummushroom spawn was inoculated in polypropylene bags containing 2 kg mixtures of sawdust, lime and rice bran in the ratio 1000:1:100. The bags were incubated at room temperature in a specially constructed chamber for 30 days and opened to initiate fruit body production. At the end of the production circle of about 6 months, the spent mushroom substrate was used immediately for water extract preparation.

PREPARATION OF WATER EXTRACT FROM SPENT MUSHROOM SUBSTRATE

Spent mushroom substrate (400g) was homogenized in a blender with 150cl of distilled water (DW) for 2 minutes at 1500rpmaccording to the proceedure described by Parada, Murakami, Shimomura, Egusa and Otani, (2011). The homogenate was filtered through two layers of calico cloth. The filtrate was used immediately for leaf treatment as water extract from spent mushroom substrate (WESMS). Half of the WESMS were autoclaved at 121°C for 30 minutes (AWESMS) andwas alsoused immediately for leaf treatment. The WESMS, AWESMS and the control (zero application of the extract) which represents the treatments were replicated 3 times in a completly randomized design. The treatments were sprayed profusely on the cassava plants with a hand sprayer.

DATA COLLECTION

For the agronomic evaluation, the following data were taken every 2weeks: Plant height (cm) with a meter rule, Number of leaves, Number of internodes, Number of nodes, Stem diameter (mm) with a vernier calipers and Leaf area (cm²) according to the method described by Edjeand Osiru (1987).

EXPERIMENTAL DESIGN AND DATA ANALYSIS

The experiment was laid out in a completely randomized design. The data generated in this study were subjected to analysis of variance (ANOVA). Means were separated using Fishers Least Significant Difference at P=0.05. Means and percentages were according to the proceedure outlined by Steel and Torrie (1980).

RESULTS AND DISCUSSION

The effects of the treatment on the growth and growth parameters of cassava after 6 months of culturing and before transplanting in the field are presented in table 1, while the correlation matrix for the relationship between the growth parameters are presented in table 2.

Table 1. Effects of The Treatment On the Growth and Growth Parameters.

Treatments	Plant	Number of	Stem	Number	Number	Leaf
	height (cm)	leaves	Diameter(mm)	Of internode	Of nodes	Area/plant(cm ²)
PTWESMS	21.31 ^a	6.59 ^a	34.67 ^a	15.20 ^a	13.83 ^a	178.7 ^a
PTAWESMS	17.98 ^a	6.95 ^a	26.33 ^b	13.95 ^{a,c}	12.33 ^a	165.4 ^a
CONTROL	16.03 ^a	8.12 ^a	26.00^{b}	11.56 ^c	12.89 ^a	173.1 ^a
F-LSD(P=0.05)	NS	NS	2.82	1.36	NS	NS

a-Figures with the same superscripts are statistically not significant.

PTWESMS-Pleurotus tuber-regium water extract spent mushroom substrate.

PTAWESMS-Pleurotus tuber-regium autoclaved water extract spent mushroom substrate.

Table 2. Correlation Matrix of the Parameters Evaluated.

Plant Character	Plant	Number of leaves	Stem diameter	Number of	Number	Leaf area
	height			internode	of nodes	
Plant height	1.0	-0.264	0.788*	0.585	-0.134	0.567
Number of leaves	-0.264	1.0	-0.444	0.061	0.394	-0.601
Stem diameter	0.788*	-0.444	1.0	0.688*	0.181	0.894**
Number of internode	0.585	0.061	0.688*	1.0	0.612	0.389
Number of nodes	-0.134	0.394	0.181	0.612	1.0	-0.046
Leaf area	0.567	-0.601	0.894**	0.389	-0.046	1.0

⁻ Negative correlation. *correlation is significant at 0.05 probability level (2-tailed): **Correlation is significant at 0.01probabilitylevel (2 tailed).

PLANT HEIGHT

The effect of the treatment on plant height revealed that plants treated with PTWESMS was 0.73% and 24.8% taller than the plants treated with PTAWESMS and the Control respectively. Also Plants treated with PTAWESMS were 10.85% taller than the plants from the Control plots. These figures were not significantly different. This result do not agree with the results obtained by Okere, Ataga, Elenwo and Ekpe, (2015). the result further showed that there was negative per centage correlation difference of 26.4% and 13.4% when plant height was respectively correlated with number of leaves and number of nodes. This implies that increases in plant height did not necessarily lead to increase in number of leaves and number of nodes. This however do not agree with the findings of Okere *et al.*(2015). There waspositive significant correlation of 78.8%, between plant height and stem diameter and 58.5% and 56.7% when plant height was crrelated with number of internodes and plant height with leaf area. This result revealled that increase in

plant height lead to significant increase in stem diameter which implies that the genes controlling plant height and stem diameter may be related. Also the non-significant positive relationship between plant height, number of internodes and leaf area werein agreement with the findings of Yen and Mau, (2007).

NUMBER OF LEAVES

There was no significant difference in the number of leaves when the results of the treatments were compared with the control and when the treatments were compared with one another. Nevertheless, this result showed that plants treated with PTWESMS had 5.18% and 18.84% less number of leaves compared to the plants treated with PTAWESMS and the control respectively. Also plants treated with PTAWESMS had 14.41% less number of leaves compared with the control. This result is in agreement with the findings of Okere *et al* (2015). There wasnegative correlation of 26.4%,44.4% and 60.4% between the number of leavesandplant height, stem diameter, and leaf aera respectively. This indicated that asplant height and stem diameterincreased the number of leaves decreases. This is because as cassava plants growthey tend to shed the older leaves

STEM DIAMETER

The effect of the treatment on stem diameter were however significantly different. The result revealed that plants treated with PTWESMS was 24.1% and 32.9% thicker than the plants treated with PTAWESMS and the control respectively. While the plants treated with PTAWESMS was 1.3% thicker than the control. These results also agree with thefindings of Spiegel Kafkafi, and Pressman, (1988). There was significantly positive correlation of 78.8,68.8, and 89.4% respectively between the stem diameter, plant height, number of internode and leaf area. The genes controlling these parameters may be related. Also number of nodes had a positive correlation of 18.1% with the stem diameter which implies that an increase in stem diameter led to increase in the number of nodes which also agree with the findings of other researches (Okere *et al.* (2015); Spiegel *et al.* (1988)) which demonstrated that Chinese cabbage treated with chitin – based products grew faster than plants treated with standard mineral fertilizer.

NUMBER OF INTERNODE

The number of internodes did not reveal any statistically significant differencebut the valuesranged from 15.20 to 11.56. This result nothwithstanding the plants treated with PTWESMShad 8.22 and 17.1% higher number of internodes than the plants treated with PTAWESMS and the control respectively while plants treated with PTAWESMS had 17.13% higher number of internodes compared with the control. The performance of PTWESMS over the other treatmentsmay be attributed to the effect of heat on the available mineral elements present in the extract as a result of autoclaving. This result also agrees with the result obtained by Okere *et al.* (2015). When subjected to correlation analysis, the result reveals a significantlypositive correlation of 68.8% between the number of internode and stem diameter. Also a positive relationship of 58.5,6.1,61.2, and 38.9% exitsbetween the number of internode and the plant height, number of leaves, number of nodesand leaf area respectively. Thisimplied that as the number of internode increases, plant height, stem diameter, number of leaves and number of nodesalso increased.

NUMBER OF NODES.

The effect of the treatment on the number of nodes were not significantly different. However, the result revealed that plants treated with PTWESMS had 10.85 and 9.62% higher number of nodes than the plants treated with PTAWESMS and the control respectively while the plants treated with PTAWESMS had 1.36% less number of nodes when compared with the Control. The correlation analysis result reveals a positive correlation of 39.4,18.1 and 61.2% betweenthe number of nodes and number of leaves, stem diameter and number of internode respectively. This result revealedthat as the number of leaves, stem diameter and number of internodes and the plant heightand leaf area respectively. This implied that as the number of nodes increased, the plant height, leaf area decreases which reveal that increases in the number of internodes do not neccessarily lead to increase in plant height and leaf area.

LEAF AREA

The leaf area per plantwas not significant but the values rangedfrom 165.4-178.7. However, plants treated with PTWESMS had 6.03% and 7.4% moreleaf canopythan the plants treated with PTAWESMS and the Control respectively. Further, plants treated with PTAWESMS had 1.47% more leaf canopythan the control. There was a significantlypositive relationship of 89.4% between leaf area and stem diameter which propably indicated linkage between the genes controlling these parameters. Also a positive relationship of 56.7 and 38.9% respectively exist between the plant height, number of internode and leaf area. which imply that increase in leaf area also led to increases in plant height, stem diameter, number of internode. This can be attributed to the fact that increase in leaf area translates

to increase in radiation interception which affect the quantity of food manufactured during photosynthesis which also affect other growth parameters evaluated. However, a negative relationship of 60.1 and 4.6% exist between the leaf area, number of leaves and number of nodes respectively which reveal that increase in leaf area canopy would lead to increase in the number of leaves (table 1).

CONCLUSION

The result obtained from this investigation revealed that PTWESMS was superior to PTAWESMS and the control. This can be attributed to the fact that while autoclaving the liquid extract releases the resistance elicitors, it however reduced the available nutrient necessary to encourage plant growth and development.

REFERENCES

- Bowman, K. & Leong, K.W. (2006). Chitosan nanoparticles for oral drug and gene delivery. Int.J. Nanomed.1.117-128.
- Castro, S.P.M. and Paulin, E.G.L. (2012). *Is chitosan a new panacea? Areas of application. In the complex world of Polysaccharide*: Karunaratne D.N., ed., InTech: Rijeka. Croatia.doi: 10.5772/51200.Available online:http://www.intechopen.com/ Books/the –complex World–of polysaccharides/ is -chitosan-a-new-panace -areas-of-application (accessed on 4 july 2013).
- Cock, J.H. (1985). Cassava: New Potential for a neglected Crop. WetviewPress, Boulderl London.
- Da Rocha, A.R. and Hammerschmidt, R. (2005). History and perspectives on the use of disease resistance inducers on horticultural Crops. HortTechnology 15, 518-529.
- Durrant, W.E. and Dong, X., (2004). Systemic acquried resistance. Annu. Rev. Phytopathol. 42, 185-209.
- Edje, O.T. and Osiru, D.S.O. (1987). Methods for determing leaf area in some cropPlants. In workshop of cassava-based cropping systems. Research IITA, Ibadan, Nigeria 16-19 Nov.1987 pp 237-245.
- Finney, K.N., Ryu, C., Sharifi, V.D.and Swithenbank, J. (2009). The reuse of spent mushroom compost and coal tailings for energy recovery: Comparison of thermal treatment technologies. Bioresour. *Technol*. 100, 310-315.
- Food and Agricultural Organization of the United Nations (2008). FAOSTAT(Online) Available from: faostat.fao.org (accessed 29.03.10)
- Gooday, G.W. (1990). The ecology of chitin. Adv. Micro. Ecol. 11,387-419.
- Gohel, V., Singh, A., Vimal, M., Ashwini, P. and Chhatpar, H.S. (2006). Bioprospecting andantifungal potential of chitinolytic microorganisms. *Afr.J. Biotechnol.*5,54-72.
- Hammerschmidt, R. and Kuc, J. (1982). Lignification as a mechanism for induced systemic resistance in cucumber. *Physiol.Plant pathol*, 20, 61-71.
- Hideno, A., Aoyagi, H., Isobe, S. and Tanaka, H., (2007). Utilization of spent sawdust matrix after cultivation of Grifola frondosa as substrateforethanol production by simultaneous saccharification and fermentation. *Food Sci. Technol. Res.*, 13,111-117.
- Jayakumar, R., Prabaharan, M., Nair, S.V. and Tamura, H. (2010). Novel chitin and chitosan Nanofibers in biomedical applications. *Biotechnol.Adv*, 28.142-150.
- Lau, K.L., Tsang, Y.Y.and Chiu, S.W. (2003). Use of spent mushroom compost to bioremediate PAH-contaminated samples. *Chemosphere*, 52, 1539 1546
- Medina, E., Paredes, C., Perez-Murcia, M.D., Bustamante, M.A. and Moral, R. (2009). Spent mushroom substrate as component of growing media for germination, and growth of horticultural Plants. *Bioresour. Technol.* 100, 4227-4232.
- Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue culture: *Physiol.Plant* 15: 473-494.
- Okere, S.E., Ataga, A.E., Elenwo, E.N. and Ekpe, I.I. (2015). Agronomic evaluation of cassava (TMS 98/0505) treated with *PleurotusOsteratus*Spent Mushroom Substrate Water Extract as Disease Resistance Elicitor. *J. Global Biosciences*, 4(2), pp.1594-1599.
- Otim-Nape, G.W., Thresh, J.M., and Fargette, D. (1996). Bemisia tabacci and cassava Mosaic virus disease in Africa.In: Gerling, D. and Meyer, R.T.(eds), Bemisia 1995: Taxonomy, biology, damage, control and management. *Andover*, pp.319 -350.
- Parada, R.Y., Murakami, S., Shimomura, N., Egusa, M. and Otani, H. (2011). Autoclaved Spent substrate of hatakeshimeji Mushroom (Lyophyllum decastes Sing.) And its water extract protect cucumber from anthracnose. *J. Crop protection*, 30,443-450.
- Pillai, C.K.S., Paul, W., Sharma, C.P. (2009). Chitin and chitosan Polymers: Chemistry, Solubility and fiber formation. *Prog Polym.Sci*, 34, 641-678
- Polat, E., Uzun, H.I., Topcuoglu, B., Onal, k., Onus, A.N. and Karaca, M. (2009). Effects of spent mushroom compost on quality and productivity of Cucumber (Cucumber, sativus L.) grown in greenhouses. *Afr.J. Biotechnol*, 8, 176-180.
- Ramirez, M.A., Rodriguez, A.T., Alfonso, L. and Peniche, C. (2010). Chitin and its derivative as biopolymers with potential agricultural applications. *Biotecnol.Apl.* 27, 270-276.
- Ribas, L.C.C., Mendoca, M.M., Camelini, C.M. and Soares, C.H.L. (2009). Use of spent mushroom substrate from *Agaricus subrufescens* (Syn. A. *Blazei, A. brasiliensis*) and *Lentinula edodes* productions in the enrichment of a soil based potting media for Lettuce cultivation: growth promotion and soil bioremediation. *Bioresour Technol*.100,4750-4757.
- Russel, G.S. (2013). A review of the applications of chitin and its derivatives in Agriculture to modify Plant-Microbial interaction and Improve crop yields. *Agronomy*. 3, 757-793.
- Sanchez, C. (2004). Moderm aspects of mushroom culture technology. Appl.microbiol. Biotechnol. 64, 756-762.
- Semple, K.T., Reid, B.J. and Fermor, T.R. (2001). Impact of composting strategies of the treatment of soil contaminated with organic pollutants: A Review. Environ. Pollut. 112, 269-283.
- Shibuya, N., Minami, E. (2001). Oligosaccharide signaling for defense responses in Plant. Physiol. Mol. Plant Pathol. 59, 223-233.
- Spiegel, Y., Kafkafi, U. and Pressman, E. (1988). Evaluation of a protein chitin derivative of crustacean shells as a slow release nitrogen Fertilizer on chinese cabbage. *J.Hortic.Sci.* 63, 621-628.
- Steel, G.D. and Torrie, J.H. (1980). *Principles and procedures of statistics. Biometrical approach*, 2nd edition. Mc Grain Hill book company inc. New York 63 pp.
- Thresh, J.M., Fargette, D., Otim-Nape, G.W. (1994). Effects of cassava mosaic gem-inivirus on the yield of cassava. *Tropical Science*, 34, 26-42. Towheed, T.E., Anastassiades, T.P., Shea, B., Houpt, J., Welch, V. and Hochberg, M.C. (2001). Glucosamine therapy for treating Osteoarthritis. Cochrane Database Syst. *Reviews. doi 10.1002/14651858.CD 002946.pub*.
- Uzun, I. (2004). Use of spent mushroom compost in sustainable fruit production. J. Friut ornam. Plant Res. 12, 157-165.

- Vallad, G.E. and Goodman, R.M. (2004). Systemic acquired resistance and induced systemic resistance in conventional agriculture. *Crop Sci.* 44, 1920-1934.
- Williams, B.C., McMullan, J.T. and McCahey, S. (2001). An intial assessment of spent mushroom compost as a potential ener feedstock. *Bioresour.Technol.*79, 227-230.
- Yen, M.T. and Mau, J.L. (2007). Selected physical properties of chitin prepared from Shiitake Stipes. Food Sci. Technol. 40, 558-563.