
African Journal of Education, Science and Technology, March, 2020, Vol 5, No. 4

105

A Clustering Accuracy Comparison Framework

Kwale F. M.
1*

, Wagacha P.W.
 2
 and Kahonge A. M.

2

1
Department of Mathematics & Computer Science, University of Eldoret, P.O. Box 1125-

30100, Eldoret-Kenya
2
School of Computing & Informatics, University of Nairobi, P.O. Box 30197-00100,

Nairobi-Kenya

*Corresponding Author’s Email Address: fmkwale@yahoo.com

Abstract

Clustering is a data mining problem of dividing documents into groups, such that documents

in one group are more similar than those in other groups. The aim of this study is to propose

a framework for comparing the accuracy of clustering algorithms. The study applies

qualitative research through document analysis to review previous clustering algorithms’

comparisons so as to obtain the issues/problems with such previous comparisons. We then

deduce appropriate comparisons framework that addresses the problems. The study

obtained the following comparison issues: Nature of comparison, nature of data, size of

data, source of data, evaluation metrics, and parameter settings. Consequently, the study

proposed the rules, formulae, and procedures needed to be used in a comparison. It is

recommended that applying this framework will ensure that such evaluations and

comparisons are done using formal procedures that will yield dependable results. This study

suggests a further study to be done to apply this framework and do a comprehensive

comparison of some clustering algorithms.

Keywords: Clustering, algorithms, metrics, parameters.

INTRODUCTION

Clustering is an area currently receiving a lot of attention. Many researchers have done

comparative study of various clustering algorithms in an attempt to recommend the well

performing ones. Others have produced their own algorithms and compared them with other

existing algorithms. However, review done in this research suggests much weakness in the

comparisons. According to Chen (2005), most authors of newly-proposed algorithms claim

success of their algorithms based on comparisons with older algorithms using a few hand-

crafted examples, showing only where the old fails and the new one succeeds.

It is important to note that the process of comparing some products (including clustering

algorithms) includes evaluating them. Therefore, we include both the aspects of evaluation

and comparisons of clustering algorithms. Evaluating a product (e.g. an algorithm) can

simply be understood to be the process of ascertaining how good (or well performing) the

product is. Consequently, comparing two or more products is simply checking which one

evaluates higher either based on a particular performance criterion or in overall.

METHODOLOGY

The study applies qualitative research through document analysis to review previous

clustering algorithms’ evaluations/comparisons and noting the methods and procedure

followed. This is aimed at obtaining the issues/problems with the previous comparisons.

../../AppData/Local/AppData/Roaming/Microsoft/AppData/Roaming/Microsoft/Word/fmkwale@yahoo.com

African Journal of Education, Science and Technology, March, 2020, Vol 5, No. 4

106

We then deduce appropriate comparisons framework that addresses the problems. The

framework is evaluated by:

 Use of examples: Examples are designed to include the various possibilities of the

results of a comparison of assumed algorithms, and consequently test the fairness of

applying the various ideas, formulae and procedures of the framework.

 Use of observations: During the development of the framework, actual runs of chosen

algorithms are carried out. This is specifically during the derivation of the

recommended parameter values.

 Logical arguments from previous research on clustering evaluations. Research findings

and theories from other researchers concerning requirements of good

evaluations/comparisons are quoted and used to justify various aspects of the

framework in the process of the framework’s development.

RESULTS AND DISCUSSION

The Clustering Comparison Framework

Issues with Previous Clustering Comparisons

From review of the previous comparisons, it can be concluded that the previously conducted

comparisons/evaluation studies were not done using an appropriate framework, thus causing

lack of information on algorithms’ performance, and consequently making it difficult to

choose algorithms for implementing clustering solutions. The many clustering comparative

studies reviewed haven’t followed a particular comparison framework resulting in their

being limited in scope/inclusivity (or failing to solve some issues of concern). For example,

it is observed that an algorithm may be better than another one using data sets with

particular sizes but poorer than other data sets, e.g. using data sets with only two classes will

of course favor KMeans algorithm since it clusters data (by default) into two clusters (i.e.

has default parameter value K=number of clusters=2). Thus, there has been no justification

of the data sizes used. And this is related to parameter values used. For example, KMeans

(with default parameter K=2) will be favored when the data points are arranged such that

there are around two classes, and otherwise not disfavored. And in this case, using the

default parameter value (K=2) in a comparison will definitely favor KMeans. Thus, there

has been no careful study to determine the best set of parameter values or data sizes to use in

a comparison based, among other possible issues that may affect comparisons results and

that require a careful study to formally identify them. The summary of those issues is as

follows.

(i) Nature of evaluations/comparisons: The problem here is whether or not empirical

comparison (which has been mainly used in previous comparisons) is sufficient. From

theory, some aspects of any algorithm can be compared descriptively but not empirically.

An example is the complexity of running time of an algorithm. Most researchers have

compared algorithm only empirically. However, we note that descriptive comparison is also

very important in distinguishing algorithms. Source?

(ii) Nature of data: The nature of documents can vary based on various factors. These

include shapes of clusters as well as the noise level (unusual values including erroneous

data/missing values, outliers, or unknown values). It has been noted the performance of a

clustering algorithm may vary by using data of different nature (or characteristics). An

algorithm may perform the best in usual regular-shaped data but perform the least with

irregular shaped data which is typical in many applications. According to Chen (2005), the

choice of the datasets used determines the comparison results.

African Journal of Education, Science and Technology, March, 2020, Vol 5, No. 4

107

 (iii) Sizes of data: It has also been noted the performance of a clustering algorithm may

vary by using data of different sizes. Sets of data documents may vary in their sizes (with

respect to clustering) based on various criteria. We can identify these as the total number of

text documents, the total number of attributes (or terms), and the number of groups/topics

(or clusters).

(iv) Sources of data: The possible sources of clustering data are generated (or synthetic)

data sets, benchmark (or real world) data sets, and personally prepared data sets. Each

source/type has its strength and limitation. The use of synthetic data sets permits us to

explore the space as much as possible, thus test the different characteristics of data including

different levels of shapes (irregularities of shapes), noise, and sizes. However unlike the

other two, it is obviously not possible to be sure that it is realistic i.e. if it represents the true

real-world data whose clustering algorithms are intended for. However, the latter are more

detailed, tested and standard, and so are advisable to be used.

(v) Evaluation metrics: According to Chen (2005), the choice of evaluation indices

determines the comparison results. There should thus be a justification of the use of the

metrics. The various accuracy metrics include the F measure, the entropy, purity, rand

index, the within-cluster sum of square, etc.

(vi) Parameter settings: Different algorithms have different parameters, e.g. K for K Means

algorithm. It has been observed that using different parameter values for an algorithm will

yield different evaluation/comparison results. For example from the concept of densities,

using a too big value of parameter Minpts in DBSCAN will cause failure to detect existing

clusters (thus lowering accuracy), while a too small value of the parameter will lead to too

much detection of non-existing clusters (thus lowering efficiency and also accuracy). And it

is also evident that it’s hard to decide an optimal value for each parameter. According to

Jiang (2003), it is difficult to stipulate the suitable parameters for complex data set. We

therefore need to justify what parameter values will be used for each algorithm to ensure

fairness in the comparison.

Clustering Comparison Domains

In the real sense, a clustering evaluation/comparison framework that accommodates the

different clustering approaches is very difficult to propose. This is because different

approaches have different ways of perceiving clusters of data sets, different similarity

measurement methods, as well as different parameter requirements. Prelic (2006, p. 1)

agrees with this by saying “Comparing clustering methods in general is difficult as the

formalization in terms of an optimization problem strongly depends on the scenario under

consideration and accordingly varies for different approaches”. However, we aim at

proposing common comparison settings that can be a compromise of the different

approaches.

Many previous clustering algorithms’ evaluations have involved comparing the algorithms

by having a very limited description of the various behaviors that distinguish the algorithms,

and generally, without following any formal theory. This leaves a lot to be desired. We

consequently propose a formal way of looking at the process of evaluating clustering

algorithms.

We can evaluate an algorithm’s clustering accuracy empirically (i.e. by running the

algorithms on sample data sets and observing the results), or descriptively (i.e. by describing

the various behaviors of an algorithm, e.g. the number of parameters). We call these the

comparison domains. For the descriptive domain, we borrow from Shtern (2010)) who gives

African Journal of Education, Science and Technology, March, 2020, Vol 5, No. 4

108

the various attributes that should be included in a descriptive comparison as assumptions,

goals, process, and characteristics. Each algorithm makes assumptions concerning what

constitutes a cluster. For example to a density-based algorithm, a cluster is assumed to be a

group of concentrated VSM points surrounded by empty space. Each algorithm is also

meant to achieve particular goal(s). For example the goal of DBSCAN algorithm (density-

based) is to find groups of VSM points, each with a minimum of Minpts points within the

radius Eps. Thirdly, each algorithm follows a unique exact process of achieving the goal.

The process of the DBSCAN algorithm for example, involves finding all neighbor points

within distance Eps of a starting point p, and either forming a cluster (if the number of the

neighbors is at least Minpts), or else considering p as noise. If a cluster is formed, then the

point p and its neighbors are added to this cluster and then p is marked as visited. The

algorithm then repeats the evaluation process for all neighbors recursively. Lastly, each

algorithm has some characteristics that describe its behavior. For example, one characteristic

of DBSCAN algorithm is that it has two parameters, i.e. Eps and Minpts.

The Proposed Clustering Comparison Framework

Descriptive domain: We give the assumptions, goals, process, and characteristics of each

algorithm. This is important because it gives an insight of the strengths and weaknesses of

the algorithms.

Empirical domain: We need to address each of the above six clustering comparison issues.

Figure 1: Framework for Clustering Accuracy Evaluation/Comparison

Comparing Accuracy

An algorithm’s accuracy is mostly measured empirically i.e. under empirical domain. But

we explain that the descriptive domain should also be applied to give the characteristics of

an algorithm. These characteristics should explain the observed results (from the empirical

measures). Concerning metrics, the accuracy of a clustering algorithm may be empirically

Paramete

rs

EMPIRICAL

Sourc

e

Clustering Accuracy Evaluation/Comparison

DESCRIPTIVE

 Goals

Characteris

tics

Process

Assumpti

ons Hardne

ss

Size

Data Metrics

African Journal of Education, Science and Technology, March, 2020, Vol 5, No. 4

109

measured using internal measures, external measures, or visual inspection. Internal

evaluation measures are depended on the type (or approach) of the algorithm used.

According to (Ghosh, cited in Greene, 2007), a key drawback of internal measures is that

valuable comparisons are only possible between clusterings that use the same data model

and similarity metric. The limitation of the visual inspection method is that it is not suitable

for large data sets since humans are prone to errors with large data, and that it is appropriate

mainly on two-dimensional data i.e. the x-y plane. External measures are not based on a

particular approach since they use only the final clustered data. Greene (2007) agrees with

this by saying that the external measures are independent on the data representation method

and metrics used during the text clustering process. This seems a major advantage of

external metrics. Various external measures include entropy, F Measure, Purity, Rand index,

and Jaccard measure. But the problem then is which of these measures to use in comparing

algorithms. We therefore need to evaluate the measures and choose one among them. We do

so by identifying some constraints that a good metric needs to meet, and checking which

metric is better based on the constraints.

From the work of Amigo (2009), we can identify the following constraints for external

evaluation measures: Homogeneity and completeness. For a metric to satisfy homogeneity,

it should prefer clusterings where items in a cluster are from one class. According to Amigo

(2009), this means that if A is a clustering with a particular cluster C containing items from

two classes c1 and c2, while B is a clustering same as A except that items in C are instead in

two clusters corresponding to classes c1 and c2, then a metric should yield better value for

distribution B for it to be said to be homogenous. For a metric to satisfy completeness, it

should prefer clusterings where items belonging to a class are clustered together. According

to the same work, this means that if A is a clustering where two clusters C1 and C2 contain

items of the same class c, while B is a clustering same as A except that clusters C1 and C2

are combined into a single cluster C, then a metric should yield better value for distribution

B for it to be said to be complete.

We therefore propose evaluating an algorithm’s accuracy from the simulation domain by

clustering the documents using the algorithm on each of particular data sets and observing a

particular metric’s value for each data set. The chosen metric should satisfy both

homogeneity and completeness requirements. Also, since the choice of metric has an effect

on the performance of an algorithm, we should settle at some metric(s) as the standard for

all the algorithms under comparison. Similarly, we should settle at particular data sizes, data

source, data hardness, and parameter values for all algorithms under comparison, so as to

have a standard and so avoid the causal effect of these on the performances of the

algorithms. Concerning data sizes, one should use almost-near data sizes (typically small or

medium sized data sets). This avoids testing scalability instead of accuracy (i.e. the data

sizes usually have a causal effect on the accuracy of an algorithm). Regarding the data

source, one needs to combine synthetic and benchmark data sets so as to take the benefits of

each of the two types. The issue of data hardness should be similarly addressed by not

varying the data hardness, unless one is testing robustness performance criteria. The data

sets chosen should be used for each algorithm in the comparison.

Concerning parameters, it should be noted that from theory, these have more causal effect

on the accuracy of algorithms more than the other factors under the empirical domain (i.e.

data sets sizes, source, hardness, and metrics). An algorithm may produce very different

results using different parameters. Also, unlike the other factors, it’s hard to determine the

best set of parameter values to use in a comparison, since different data sets have different

distributions of data points. For example in DBSCAN, there is no ideal radius (Eps) that

should be used for all data sets because different data sets will have different distances

African Journal of Education, Science and Technology, March, 2020, Vol 5, No. 4

110

between the data points. Similarly, there is no ideal value of parameter K for KMeans since

different data sets will have different number of classes. But we need to settle at some

values for the parameters of each algorithm in order to have a fair comparison. Thus, though

developers of most algorithms have implemented default values for their algorithms, they

are not sufficient for all data sets. The problem is therefore deciding on what parameter

values to use. And as explained above, this parameter values issue is not a problem when

evaluating one algorithm as long as constant parameters values are used for all data sets.

What matters is when comparing algorithms. We need to justify what parameter values will

be used for each algorithm to ensure fairness. We may simply opt for the default parameter

values for each algorithm. However, this may be unfair to some algorithms when the data

sets used are of particular sizes/nature. For example, KMeans will be favored when the

documents contain around two classes (since default value for parameter K=number of

clusters to generate is 2 for KMeans) and disfavored when most documents have many

classes. Similarly, DBSCAN will be favored when most documents’ approximate distances

between their data points is around 0.9 and disfavored in the otherwise situation.

To solve this issue, we can use settings that give each algorithm in the comparison a

particular level of chance, e.g. the best chance. And this is of course based on the properties

of the algorithms (typically the parameters) and of the data sets (sizes and nature – the

distributions of the data points). For centroid-based algorithms (or those with parameter k),

the only major parameter is K=number of clusters to generate, and it’s the k’s value that

determines the accuracy irrespective of the sizes and nature of data points. And

consequently, such algorithms’ best performance is when the produced clusters matches

(and so equals) the classes. Thus, we argue that the best chance (compared to using default

parameters) of centroid-based algorithms (or those with parameter K) is K=number of

classes. Similarly, we argue that the best chance for density-based algorithms can be

obtained from the algorithms’ parameters and the data sets nature and sizes. And this is by

assigning the parameters values corresponding to the distributions of the data points,

specifically, setting Eps to equal the approximated average distance between the data points

and their group center, and ensuring that the MinPts value used is not larger than the average

class size. And the points’ distances from a center of each group/class can be measured from

the sum of squared error (SSE) formula, which measures the total squared distances between

each object xi and the center of its class (referred to as Cu) as

 SSE =

This means that we can approximate the average distance between the data points and their

centers as

 Approximate points distance = √ (SSE/number of instances)

And so since DBSCAN tries to find groups of points containing at least MinPts points

within distance Eps, we can argue that setting parameter Eps= √ (SSE/number of instances)

could yield the best chance for DBSCAN. AS for parameter MinPts, if we use data sets

whereby (no. of instances / no. of classes) >= 6 (which is true with most data sets in use for

comparisons), we can comfortably retain parameter MinPts with default value 6, since this

value represents the minimum number of objects in a group, and so is not affected by larger

groups.

We thus compare algorithms’ accuracy by running each algorithm on each data set and

record the metric value for each run. The chosen metric should satisfy both homogeneity


 Ccx

k

c
i

1

d(xi-Cu)
2

[1]

[2]

African Journal of Education, Science and Technology, March, 2020, Vol 5, No. 4

111

and completeness requirements. The data sets used should be randomly sampled with good

sample size, of almost-near data sizes (typically small or medium sized data sets), with no

hardness added, and from both synthetic and benchmark sources. Random sampling is

important in ensuring that the wide range of data sets available is represented (a random

sample is usually a good representation of the population), and so the data biasness is

avoided. The parameter values used should be K=number of classes (for centroid-based

algorithms or those with parameter K) and Eps=√(SSE/number of instances),

MinPts=default value (for density-based algorithms), but we ensure that the average class

size for each data set (i.e. no. of instances / no. of classes) is at least 6. We then calculate the

average accuracy for each algorithm out of the accuracies in all the data sets. We then rank

the algorithms such that those with the best average accuracy win.

Also where appropriate, we apply the descriptive domain to describe how the assumptions,

goals, process, or characteristics of an algorithm contribute to its observed accuracy (either

high accuracy or low accuracy). For example from the literature, the cell adjacency problem

of cell-based algorithms (their assumption is that a cluster is a group of neighboring cells)

theoretically makes them have relatively lower accuracy as compared to density-based

algorithms.

Addressing issue of un-clustered data sets: But an issue with calculating average

accuracies and ranking the algorithms based on the average accuracies is the un-clustered

data sets. From experience, an algorithm may not cluster at all some data set during the

performance comparison (e.g. it may fail after a short time giving fail message, or may just

hang, or may take indefinitely very long time to cluster without stopping). The question is

what accuracy value to assign that algorithm for that data set? Ordinarily, we assign

accuracy value of 0 for that algorithm on that data set such that the average accuracy value

for that algorithm is lowered.

But the problem here is that some accuracy metrics have the best algorithms with the lower

values (e.g. within cluster sum of square, percentage of wrongly clustered instances, etc),

and so giving such algorithm value 0 will erroneously mean it’s the most accurate in that

data set, and the average is also lowered (improved). And we call such a metric a low-value

metric, and the opposite a high-value metric. For example, assume two algorithms (A1 and

A2) obtaining the following accuracy values (using a low-value metric) for three data sets

A, B, and C respectively: (2, 4) and (2, 4, 3) i.e. both algorithms have the same accuracies

for data A and B but A1 does not cluster data C. If we assign 0 for the un-clustered data set,

the comparison will be as follows.

Table 1: Wrong accuracy comparison of two algorithms

Data set A1 A2

A 2 2

B 4 4

C 0 3

Average 2 3

Rank 1 2

So algorithm A1 is unfairly judged as the most accurate in data set C, and also as the most

accurate in accuracy ranking because of its lowered average. Another problem here is that

we won’t be able to distinguish between 0’s occurring as a result of un-clustered data and

those occurring as a result of actual accuracies of value 0.

African Journal of Education, Science and Technology, March, 2020, Vol 5, No. 4

112

So we alternative use the style of just leaving missing values for the un-clustered data sets

(and computing averages excluding the un-clustered data). But the problem here is that still,

an algorithm with missing values may get better average accuracy as a result (since the

average is computed excluding the un-clustered data sets).

For example, repeating the immediate above example to have missing values rather than

zeros for un-clustered data sets, algorithm A1 will have a blank value for data set C. The

average of A1 will thus be 3 (i.e. , while for A2 will remain 3. So both A1 and

A2 will be ranked equal yet A1 cannot cluster at all data C unlike A2! Thus, we need a

formula to cater for such un-clustered data.

In clustering, the issue of an algorithm failing to cluster some data sets should be addressed

well during comparisons.

We therefore propose a simple and fair formula for un-clustered accuracies. We consider the

accuracy of such un-clustered data sets as missing values. We then calculate the average

accuracy for that algorithm out of all clustered data sets (excluding the un-clustered data

sets), but then increase this average value proportionally to the number of un-clustered data

sets. We do so by incrementing the average value by the ratio of the number of un-clustered

data sets over the total data sets multiplied by the average value, i.e.

Accuracy = average accuracy + (average accuracy * unclustered data sets / total data

sets)

This means that for the algorithms that cluster all data sets, the formula is

Accuracy = average accuracy

But in case there is an algorithm with no clustered data set at all, since it has missing values

for all data sets, we simply don’t apply the formula nor do we compute even the average

value. We simply rank it (or them) last. Repeating the immediate above example to use this

formula, we get

Table 2: Accuracy comparison of two algorithms using low-value metric

Data set A1 A2

A 2 2

B 4 4

C 3

Average 3 3

Measure 4 3

Rank 2 1

Here, the accuracy measure of A1 is computed as . Thus, A1’s average is

increased proportionally to the number of un-clustered data sets.

We also explain that this idea of having missing values should also happen when using a

high-value metric. In this case, an algorithm with missing values should have lower average

rather than higher one as a result. So the formula becomes

[3]

[4]

African Journal of Education, Science and Technology, March, 2020, Vol 5, No. 4

113

Accuracy = average accuracy - (average accuracy * unclustered data sets / total data

sets)

Which is logically the same as

Accuracy = average accuracy * clustered data sets / total data sets

For example, assuming the immediate above example was based on a high-value metric, the

comparison will become

Table 3: Accuracy comparison of two algorithms using high-value metric

Data set A1 A2

A 2 2

B 4 4

C 3

Average 3 3

Measure 2 3

Rank 2 1

Here, the accuracy measure of A1 is computed as or . Thus,

A1 average accuracy is reduced proportionally to the number of un-clustered data sets.

Empirically evaluating the best chance parameter values: Here, some empirical study is

done to test the correctness of the above recommended parameters values representing the

best chance. These are K=number of classes (for centroid-based algorithms or those with

parameter K) and Eps=√(SSE/number of instances), MinPts=default value (for density-

based algorithms), but ensuring that the average class size for each data set (i.e. no. of

instances / no. of classes) is at least 6. As explained above, the only other chance is using the

default parameters values. We thus investigate if these recommended parameter values yield

better performance than the use of default parameters values.

Therefore, a hypothesis is formed as follows.

Ho (null hypothesis): The recommended parameter values do not yield better performance

than the use of default parameters values

H1 (alternative hypothesis): The recommended parameter values do yield better

performance than the use of default parameters values

The following is the framework and results of the tests.

(i) Research type, framework

The observational research method is applied in this sub-study to observe behaviors of

algorithms, specifically the accuracy, when run on data sets. This is by following the

empirical domain of Figure 1 (Framework for Clustering Evaluation or Comparison) which

dictates determining the parameter values, metrics, data sets sources, sizes, and nature used

in the study. But since the study aims as determining if some parameter values give the best

chance, parameter values are not determined. The rest are explained below.

(ii) Algorithms

The KMeans and DBSCAN algorithm are used to represent the algorithms that require

parameter K and parameters (Eps, MinPts) respectively.

[5]

[6]

African Journal of Education, Science and Technology, March, 2020, Vol 5, No. 4

114

(iii) Software platform

The WEKA data mining software tool version 3.6.12 was used in the tests. The WEKA

software tool was selected because of various reasons. First, all the above algorithms are

available on the WEKA tool. Secondly, WEKA is widely used in data mining applications,

and so is well tested. Thirdly, it is very easy to learn and use WEKA besides its friendly

graphical user interface that allows for visualization of clustering results. Fourth, WEKA is

open source software, and thus is freely available, modifiable, and so has a more guaranteed

quality.

(iv) Data sets

The total number of data sets used for DBSCAN was 30 (15 benchmark and 15 synthetic),

while for KMeans was 30 (12 benchmark and 18 synthetic). Using both benchmark and

generated data sets is for the purpose of having varieties of data sets. Since we are not

comparing algorithms but analyzing behaviors of same algorithm for many runs, the sizes

and hardness of data used is not important. However, the average class size for each data set

(i.e. no. of instances / no. of classes) is determined to be at least 6 (for DBSCAN data sets)

for the purpose of testing DBSCAN parameter value with MinPts =6. Also, the class size

used for KMeans was of course not equal to 2 (since there wouldn’t be any difference in

results here when K= default value i.e. 2 and K=no. of classes=2).

The benchmark data sets selected based from the popular UCI machine learning repository.

The choice of this repository was on various criteria. First, the previously tested and

popularly-used data sets were preferred. These are more likely to be standard and of good

quality. Secondly, the data sets should be freely available and permissions for academic use

granted by its authors. Thirdly, only preprocessed data sets which are in the format of the

preferred WEKA software tool i.e. .arff or .csv formats were used. Using the already

preprocessed data saves comparison time. Fourth, only the data sets with already pre-

assigned classes were selected as required by our framework. This is so as to be able to

directly apply external evaluation measures during evaluation of clusterings. The UCI data

sets were selected randomly to ensure that the selected ones are actual representation of all

the data sets available, and so there was varied number of instances, attributes classes,

except in checking that the obtained data sets met the conditions (no. of instances / no. of

classes)>=6 (for DBSCAN data sets) and (no. of classes doesn’t equal 2) for KMeans data

sets.

Some synthetic data sets were generated by the following WEKA generation tools:

RanodmRBF, RDG1, LED24, and Agrawal. One WEKA tool was excluded, i.e. BayesNet.

This is because it generated non-numeric data, which is not desirable in our study. Other

synthetic data sets used were previously generated by a researcher, Muller (2009), and made

available for academic use. The data sets are described below. Also given is the calculated

SSE measure for the sake of testing DBSCAN’s best chance parameter values.

African Journal of Education, Science and Technology, March, 2020, Vol 5, No. 4

115

Table 4: Data sets for testing DBSCAN parameter values (showing data set description, number

of instances, attributes, and classes, SSE measure, and value √(SSE/number of instances)

Data set No. of

inst.

No. of

attr.

No. of

classes

SSE Sqrt(SSE/

inst.) Ref Description

1 Hepatitis

155 20 2 430.2 1.7

2 Tae

151 6 3 48.4 0.6

3 Credit-g

1000 21 2 5366 2.3

4 Vehicle 846 19 4 223.6 0.5

5 Iris 150 5 3 7.0 0.2

6 Diabetes 768 9 2 121.3 0.4

7 Vote 435 17 2 1449 1.8

8 Anneal 898 39 6 2401.8 1.6

9 Livers_disorders. 345 7 2 30.0 0.3

10 Sick 3772 30 2 6611.2 1.3

11 Waveform-5000 5000 41 3 3405.2 0.8

12 Multi-feature Digit 2000 48 10 1502.6 0.9

13 Pendigits 10992 17 10 5079.9 0.7

14 Cmc 1473 10 3 2953.2 1.4

15 Segment-challenge 1500 20 7 263.8 0.4

16 Dataset generated by RandomRBF

WEKA tool
1000 32 8 811.2 0.9

17 Dataset generated by RDG1 WEKA

tool
1000 32 8 2310.2 1.5

18 Dataset generated by LED24 WEKA

tool
1000 25 10 6908.0 2.6

19 Dataset generated by Agrawal

WEKA tool
1000 10 2 2770.4 1.7

20 S1500: Dataset from Muller, E et al.

(2009)
1595 21 12 1074.6 0.8

21 D05: Dataset from Muller, E et al.

(2009)
1595 6 12 132.1 0.3

22 Dataset generated by RandomRBF

WEKA tool
500 16 4 90.4 0.4

23 Dataset generated by RDG1 WEKA

tool
500 16 4 552.8 1.1

24 Dataset generated by RandomRBF

WEKA tool
1000 31 2 220.0 0.5

25 Dataset generated by RDG1 WEKA

tool
250 8 2 131.7 0.7

26 S2500: Dataset from Muller, E et al.

(2009)
2658 21 12 1544.7 0.8

27 D10: Dataset from Muller, E et al.

(2009)
1595 11 12 446.7 0.5

28 S3500: Dataset from Muller, E et al.

(2009)
3722 21 13 2136.5 0.8

29 S4500: Dataset from Muller, E et al.

(2009)
4785 21 12 2766.0 0.8

30 S5500: Dataset from Muller, E et al.

(2009)
5848 21 12 3578.9 0.8

African Journal of Education, Science and Technology, March, 2020, Vol 5, No. 4

116

Table 5: Data sets for testing KMeans parameter values (showing data set description,

number of instances, attributes, and classes)

Data set No. of

inst.

No. of

attr.

No. of

classes Ref Description

1 Tae

151 6 3

2 Vehicle 846 19 4

3 Iris 150 5 3

4 Anneal 898 39 6

5 Waveform-5000 dataset. 5000 41 3

6 Multi-feature Digit dataset. 2000 48 10

7 Pendigits 10992 17 10

8 Cmc 1473 10 3

9 Segment-challenge 1500 20 7

10 SensorDiscrimination 2212 13 3

11 LandformIdentification 300 7 15

12 Ecoli: contains protein data 336 8 8

13 Dataset generated by RandomRBF WEKA tool 1000 32 8

14 Dataset generated by RDG1 WEKA tool 1000 32 8

15 Dataset generated by LED24 WEKA tool 1000 25 10

16 S1500: Dataset from Muller, E et al. (2009) 1595 21 12

17 D05: Dataset from Muller, E et al. (2009) 1595 6 12

18 Dataset generated by RandomRBF WEKA tool 500 16 4

19 Dataset generated by RDG1 WEKA tool 500 16 4

20 S2500: Dataset from Muller, E et al. (2009) 2658 21 12

21 D10: Dataset from Muller, E et al. (2009) 1595 11 12

22 S3500: Dataset from Muller, E et al. (2009) 3722 21 13

23 S4500: Dataset from Muller, E et al. (2009) 4785 21 12

24 S5500: Dataset from Muller, E et al. (2009) 5848 21 12

25 Generated by LED24 generator of WEKA with

0% noise added
100 25 10

26 Generated by LED24 generator of WEKA with

15% noise added
100 25 10

27 Generated by LED24 generator of WEKA with

30% noise added
100 25 10

28 Dataset generated by RandomRBF WEKA tool 250 8 6

29 Dataset generated by RandomRBF WEKA tool 250 8 10

30 Dataset generated by RDG1 WEKA tool 250 8 6

(v) Metrics

We note the accuracy using the metric Error Rate. The metric is chosen because it has been

found to meet the constraints of homogeneity and completeness. Besides, its popularity is

unquestionable since it is included in the popular WEKA tool and some researchers who

used it for comparison studies include KGA (Hao 2012) and Verma (2012). Unless the data

is added hardness, it means the total inaccuracy of the algorithm will be the sum of the two

WEKA metrics (failure to cluster data is inaccuracy unless noise is added). We then express

(by calculation) this sum as a percentage of the total number of instances (i.e. the percentage

accuracy) as

(Unclustered Instances + Incorrectly Clustered Instances) / total instances *100

[7]

African Journal of Education, Science and Technology, March, 2020, Vol 5, No. 4

117

This is especially because the data sets don’t include hardness (i.e. outlier points) which

would otherwise be validly interpreted as un-clustered data.

(vi) Method

(1) Tests using DBSCAN algorithm

For each of the 30 data sets, the algorithm is run twice, i.e.

(I) Using default parameter values of Eps=0.9, MinPts=6

(II) Using the parameter values Eps=√(SSE/number of instances), MinPts=default

value (6).

The percentage accuracy value is recorded in each run using a table. The best run of the two

is then noted and recorded for each data set. We finally calculate the number of times that

each of the two types of runs (i.e. (I) and (II)) has better accuracy (i.e. lower percentage

accuracy value). If (II) has highest number, then the alternative hypothesis is adopted,

otherwise the null hypothesis. Another confirmation is done using calculated average

percentage accuracy value for each of the two types of runs i.e. (I) and (II).

(2) Tests using KMeans algorithm

For each of the 30 data sets, the algorithm is run twice, i.e.

(I) Using default parameter value for K=2

(II) Using the parameter value K=number of classes

The percentage accuracy value is recorded in each run using a table. The best run of the two

is then noted and recorded for each data set. We finally calculate the number of times that

each of the two types of runs (i.e. (I) and (II)) has better accuracy (i.e. lower percentage

accuracy value). If (II) has highest number, then the alternative hypothesis is adopted,

otherwise the null hypothesis. Another confirmation is done using calculated average

percentage accuracy value for each of the two types of runs i.e. (I) and (II).

(vii) Results for tests using DBSCAN algorithm

Observations

 Runs (II) i.e. using parameter Eps=√(SSE/inst.) is better 21 times as compared to 4

times for runs (I) i.e. using default value Eps=0.9, and this is clearly a significant

difference.

 The lower accuracy of runs (I) is also manifested from the three failed runs (i.e. the

algorithm could not cluster at all) as opposed to no failed run for (II).

 In addition, the differences in accuracy values between runs (I) and (II) is quite high in

most cases, and as such, the calculated average percentage accuracy values are (we

assign percentage accuracy=100 where the algorithm failed to cluster);

(I)=66.3 %, (II)= 44.2%

The number of times runs (I) and (II) are better is as follows.

Using benchmark data Using synthetic data Total

Runs (I) 4 0 4

Runs (II) 9 12 21

African Journal of Education, Science and Technology, March, 2020, Vol 5, No. 4

118

Table 6: Parameter values test results for DBSCAN (using percentage accuracy values)

Data set Sqrt(SSE/

inst.)

(I)

Using

default

Eps,

minpts

(II) Using

Eps=√(SSE/inst.)

Better

Ref Description

1 Hepatitis 1.7 88.4 23.2 II

2 Tae 0.6 59.6 59.6 None

3 Credit-g 2.3 Fail 30.1 II

4 Vehicle 0.5 74.2 74.4 I

5 Iris 0.2 66.7 34.0 II

6 Diabetes 0.4 34.9 35.6 I

7 Vote 1.8 93.8 39.1 II

8 Anneal 1.6 93.8 23.6 II

9 Livers_disorders 0.3 42.0 45.8 I

10 Sick. 1.3 83.9 6.4 II

11 Waveform-5000 0.8 67.0 77.7 I

12 Multi-feature Digit 0.9 90.0 90.0 None

13 Pendigits 0.7 89.6 89.4 II

14 Cmc 1.4 59.5 57.1 II

15 Segment-challenge 0.4 84.3 53.0 II

16 Dataset generated by RandomRBF

WEKA tool
0.9 23.1 23.1 None

17 Dataset generated by RDG1 WEKA tool 1.5 Fail 91.2 II

18 Dataset generated by LED24 WEKA

tool
2.6 Fail 88.1 II

19 Dataset generated by Agrawal WEKA

tool
1.7 99.6 39.1 II

20 S1500: Dataset from Muller, E et al.

(2009)
0.8 27.1 26.8 II

21 D05: Dataset from Muller, E et al.

(2009)
0.3 90.2 80.3 II

22 Dataset generated by RandomRBF

WEKA tool
0.4 66.2 17.8 II

23 Dataset generated by RDG1 WEKA tool 1.1 88.0 30.8 II

24 Dataset generated by RandomRBF

WEKA tool
0.5 33.0 19.8 II

25 Dataset generated by RDG1 WEKA tool 0.7 21.2 21.2 None

26 S2500: Dataset from Muller, E et al.

(2009)
0.8 27.5 27.5 None

27 D10: Dataset from Muller, E et al.

(2009)
0.5 90.4 55.6 II

28 S3500: Dataset from Muller, E et al.

(2009)
0.8 19.2 19.0 II

29 S4500: Dataset from Muller, E et al.

(2009)
0.8 38.1 18.9 II

30 S5500: Dataset from Muller, E et al.

(2009)
0.8 37.6 27.9 II

Totals

I: 4

II: 21

None: 5

African Journal of Education, Science and Technology, March, 2020, Vol 5, No. 4

119

It can be seen that runs (II) are better using both benchmark data and synthetic data (thus in

any type of data), and in overall. In addition, the average accuracy values (in percentage

accuracy) for both types of runs are;

(I)=66.3%, (II)=44.2%

This is clearly a significantly big accuracy difference.

Therefore, we adopt the alternative hypothesis and conclude that using the approximated

parameter value Eps=√(SSE/inst.) is a better accuracy chance for DBSCAN instead of using

default value Eps=0.9

(viii) Results for tests using KMeans algorithm

Table 7: Parameter values test results for KMeans (using percentage accuracy values)

Data set No. of

classes

(I)

Using

default

K=2

(II)

Using

K=

classes

Better

Ref Description

1 Tae 3 57.0 48.3 II

2 Vehicle 4 62.9 63.0 I

3 Iris 3 33.3 11.3 II

4 Anneal 6 49.6 57.8 I

5 Waveform-5000 3 37.7 48.9 I

6 Multi-feature Digit 10 80.2 37.8 II

7 Pendigits 10 79.4 33.8 II

8 Cmc 3 60.8 61.1 I

9 Segment-challenge 7 71.5 33.4 II

10 SensorDiscrimination 3 55.2 29.4 II

11 LandformIdentification 15 86.3 32.7 II

12 Ecoli 8 37.8 38.7 I

13 Dataset generated by RandomRBF WEKA

tool
8 36.0 26.3 II

14 Dataset generated by RDG1 WEKA tool 8 70.5 80.9 I

15 Dataset generated by LED24 WEKA tool 10 88.0 65.4 II

16 S1500: Dataset from Muller, E et al. (2009) 12 81.0 33.3 II

17 D05: Dataset from Muller, E et al. (2009) 12 80.7 53.8 II

18 Dataset generated by RandomRBF WEKA

tool
4 33.6 11.2 II

19 Dataset generated by RDG1 WEKA tool 4 50.4 65.6 I

20 S2500: Dataset from Muller, E et al. (2009) 12 80.9 14.5 II

21 D10: Dataset from Muller, E et al. (2009) 12 80.9 38.3 II

22 S3500: Dataset from Muller, E et al. (2009) 13 81.0 27.4 II

23 S4500: Dataset from Muller, E et al. (2009) 12 81.1 22.5 II

24 S5500: Dataset from Muller, E et al. (2009) 12 80.8 34.3 II

25 Generated by LED24 generator of WEKA

with 0% noise added
10 81.0 52.0 II

26 Generated by LED24 generator of WEKA

with 15% noise added
10 77.0 68.0 II

27 Generated by LED24 generator of WEKA

with 30% noise added
10 84.0 74.0 II

28 Dataset generated by RandomRBF WEKA

tool
6 28.4 21.2 II

29 Dataset generated by RandomRBF WEKA

tool
10 54.8 37.2 II

30 Dataset generated by RDG1 WEKA tool 6 56.8 72.0 I

Totals

I: 8

II: 22

None: 0

African Journal of Education, Science and Technology, March, 2020, Vol 5, No. 4

120

Observations from table 7

The number of times runs (I) and (II) are better is as follows.

 Using benchmark data Using synthetic data Total

Runs (I) 5 3 8

Runs (II) 7 15 22

It can be seen that runs (II) are better using both benchmark data and synthetic data (thus in

any type of data), and in overall. In addition, the average accuracy values (in percentage

accuracy) for both types of runs are;

(I)=64.6%, (II)=43.1%

This is clearly a significantly big accuracy difference.

Therefore, we adopt the alternative hypothesis and conclude that using the approximated

parameter value K=number of classes gives a better accuracy chance for KMeans instead of

using default value K=2.

Based on the findings in Tables 6 and 7, we therefore adopt the alternative hypothesis that

the recommended parameter values do yield better performance than the use of default

parameters values.

CONCLUSION

It is concluded that clustering algorithms’ evaluation and comparison has not been

previously done satisfactory. It is recommended that applying this framework will ensure

that such evaluations and comparisons are done using formal procedures that will yield

dependable results. It is suggested that another study should be done to apply this

framework and do a comprehensive comparison of some clustering algorithms.

REFERENCES

Amigo, E., Gonzalo, J., Artiles, J. &Verdejo, F. (2009). A comparison of Extrinsic Clustering Evaluation Metrics

based on Formal Constraints. Technical Report, Departamento de Lenguajes y SistemasInformaticos,

UNED, Madrid, Spain, viewed 19 January 2015, http://nlp.uned.es/docs/amigo2007a.pdf.
Chen, J. (2005). Comparison of Clustering Algorithms and its Application to Document Clustering. PhD Thesis.

Princeton University.

Chen, Y. Qin, B. Liu, T. Liu, Y. & Li, S (2010). The Comparison of SOM and K-means for Text Clustering.
International Journal of Computer and Information Science, 3(2).

Greene, D. (2007). A State-of-the-Art Toolkit for Document Clustering. PhD Thesis. University of Dublin.

Hao, Z. (2012). A New Text Clustering Method Based on KGA. Journal of Software, 7(5), pp. 1-5.
Jiang, D., Pei, J. & Zhang, A. (2003). DHC: A Density-based Hierarchical Clustering Method for Time Series Gene

Expression Data. Proceedings of Third IEEE Symposium on Bioinformatics and Bioengineering 10-12

March 2003, pp. 393 – 400, print ISBN: 0-7695-1907-5.
Müller E., Günnemann S., Assent I., Seidl T. (2009). Evaluating Clustering in Subspace Projections of High

Dimensional Data http://dme.rwth-aachen.de/OpenSubspace/. In Proc. 35th International Conference on

Very Large Data Bases (VLDB 2009), Lyon, France.
Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Buhlmann, P., Gruissem, W., Hennig, L., Thiele, L., & Zitzler,

E. (2006). A systematic comparison and evaluation of biclustering methods for gene expression data.

Oxford University Press, 22(9).
Shtern, M. (2010). Methods for Evaluating, Selecting And Improving Software Clustering Algorithms. PhD Thesis,

York University.

Verma, M., Srivastava, M., Chack, N., Diswar, A. & Gupta, N. (2012). A Comparative Study of Various Clustering
Algorithms in Data Mining. International Journal of Engineering Research and Applications (IJERA),

2(3).

