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Abstract  
A fishery model with price dependent harvesting is developed, by formulating a 

system of three differential equations describing the dynamics of the model. In order 

to reduce the dimensions of the system, it is aggregated to a system of two equations 

to ease analysis while preserving the necessary dynamics. Aggregation is attained by 

approximate aggregation where the system of three equations is replaced by a system 

of two equations through justified simplification in which evolution of the price is 

taken to evolve relatively faster than the evolution of the fish stock and the fishing 

effort. Local stability analysis is carried out and from the analysis, three cases of 

equilibrium solutions are obtained: unstable equilibrium, stable equilibrium and the 

co-existence of three strictly positive equilibria where two are stable, separated by a 

saddle. In the case of the co-existence of two stable equilibrium points, market prices 

are compared and a prediction of two kinds of fishery: an over-exploited fishery 

where the fishery supports a large economic activity but risks extinction and an 

under-exploited fishery where the stock is maintained at a large level far from 

extinction but the fishery only supports a small economic activity. 
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INTRODUCTION 

 

Sustainable harvesting of renewable resources has been widely considered in bio-

economics in an attempt to have sustainable resource exploitation (Clark, 1990; 

Cropper & Lee 1979; Walras, 1874). A fishery is such a renewable resource and 

fishery dynamics has been studied with earlier models considering population growth 

described by Verhulst‘s growth model 

 

dn n 

…………………… ...............……………………………………1 

    

dt   rn(1 K )   

where  represents the population of fish at time ,  the intrinsic growth rate 

and  is the carrying capacity (Murray, 1993). 

 

When harvesting is considered, the model in equation 1 takes the form 
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dn  rn(1  n )  h((n, E)  where is  a  function  of that  is 

dt 
 

 K    
describing the fishing effort. 

 

An appropriate choice of  is made mimicking predation depending on the fish 

resource and the fishing effort. Fishing effort, especially of an economic resource, is 

invariably dependent on the forces of demand and supply of the resource. For the case 

of a fishery, the demand and the price on the market are key to the investment in the 

fishing effort. Moreover, the demand will also determine the price and hence the 

effects of supply and demand need to be considered in a more realistic model. If we 

take supply and demand into consideration, a more feasible model to study the fishery 

dynamics with price dependent harvesting is 
 

………………..2(i) 
 

……………………….2(ii) 
 

……………2(iii) 

 
The first equation describes the evolution with time of the fish population, the second 

equation describes the evolution of the fishing effort, where some is 

function dependent on the cost of harvesting , and the  benefit which depends on the  
market price  such that the fishing effort is determined by the difference of the 

benefits and the cost of fishing. The last equation describes the evolution with time of 

the market price  which depends on the supply and demand forces governed  
supply and demand functions  A choice of the demand function and a 

consideration of the price dynamics caused by constraints in harvesting and storage, 

determines the extent of the effort applied in the harvesting for the fishery to be of 

economical value. Smith (1969) considered a model with a constant price:  
 

 

............................................................................................3 
 

 

where  represent the mass of the fish resource, while  represents 

the fishing effort at time  The function  is the natural growth function of the   
resource, the harvesting function depending on the resource and the fishing 

effort.  Smith  (1969)  considered  a  Holling  Type  II functional  response as the 

harvesting function.  The  constant   is the  cost  per  unit  of  fishing effort, is an  

adjustment positive co-efficient depending on the fishery and  the landed fish price  
per unit of the landed fish stock at time  Stability analysis revealed two stable 

positive equilibria and a saddle. Barbier et al. (2002) proposed a time discrete version 

of model in equation 3, but used a Schaefer function as the functional response, that is 
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 with  a positive constant called capturability (Schaefer, 1957). 

Stability analysis and pooled time analysis showed two stable fixed points and a 

saddle. Mchich et al. (2002) considered a model with linear variation in price given 

by:  
 
 

 

……………………………………………4 
 
 
 

 
Where, the differentiation is with respect to a fast time scale, a spatial fishery with 
two fishing areas is considered. Stability analysis reveals a stable equilibrium and a 

stable limit cycle. Auger et al. (2009) modified the model in Equation 4, by 
considering the effects of the market price on the dynamics of Equation 4. This was 

done by the addition of the equation; 
 

………………………………………………..5 
 

Where  is the price of the stock of fish at any time t, a positive constant 

describing the speed of price adjustment on the market and  a demand function 

which is assumed to decrease with increasing price. This equation describes the 

variation of the price with time and it is assumed that the price varies according to the 

difference between the demand and the supply. Stability analysis done on this model 

reveals co-existence of two stable positive equilibrium with a separatrix associated to 

the stable manifold of the unstable equilibrium in the middle. 

 

DISCUSSIONS 

 

The Model 

 
A simple time continuous model describing the relationship between the three main 
variables; Fish stock, harvesting effort and the market price alongside the parameters 
is presented in equation 6: 

 
. 

n  f (n)  h(n, E)  
. 

E   ( ph(n, E)  cE)  …………………………………………………………..6 
 

.     

p  p(D( p)  h(n, E)  

 n 

In  the equation  6  is  the  logistic  growth  rate  function,  the 

   

f (n)  rn(1  k )   

harvesting function  h(n, E) depending on the fish resource and the fishing effort 
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mimicks predation  and  takes  the  form  h(n, E)  g(n, E)E, where  the  function 

g(n, E) is called the functional response, which is the amount of fish captured per  
unit of fishing. Schaefer function  g(n, E)  qn is chosen since it takes into account  

mortality and harvesting as  control variables to the stock growth, q is a positive 
 

constant referred to as capturability. With this choice of 
 
f (n) 

 
and h(n, E) , the first  

 . 

n 
 

equation in 6, becomes n  rn(1  )  qnE . The second equation in 6, describes 
 

  k 
the evolution of the fishing effort depending on the difference between the benefit 
and  the  cost of  fishing.  This  dynamics  of  harvesting  are  described  by;  

. 

E  (benefit  cos t), with the total benefit being the product of the market price and the 

total catch, while the total cost being the product of the cost per unit fishing 
. 

and the fishing effort, thus we have E   ( ph(n, E)  cE) , where a constant  
of proportionality is is a positive adjustment coefficient. The third equation in 6, 

describes the variation of market price, which depends on the demand, supply of the 
fish and the price dynamics. Assuming that relative variation in the market price is 

governed by a simple balance between demand and supply of the fish which is simply  
   .   

the  catch, this relation  is  represented  by; 
p 
 D( p)  S ( p), (Mackay,  1989). 

p 

Taking 
     

as a constant of proportionality that is referred to as the price adjustment 
   .    

parameter, thus the  equation  becomes, 
p  D( p)  S ( p), with D( p)  and 

 

   p   
S ( p) denoting the demand and supply functions respectively. With the choice of  

D( p)  A  p(t) where A is a positive constant parameter representing the limit 
 

threshold of the market price such that the demand decreases linearly with increasing 

market price, and S( p)  qnE, the equation in market price becomes;  
. 

p  p( A  p  qnE). This equation has market price evolving nonlinearly 
 

depending on the price dynamics and the difference between demand and supply. The 
existence of the price dynamics in this equation is occasioned by the price fluctuations 

on the market forces caused by supply variations and reliability of storage facilities. 

This function makes Equation 6, to take the form; 

 

n
.
  rn(1  k

n
 )  qnE, 

  
. 

E  E( pqn  c), …………………………………………………………….7 
 

. 

p  p( A  p  qnE). 
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Aggregated Model 

 
Evolution of the market price is comparatively faster than the evolution of the fish 
stock and fishing effort. This is due to day to day variation of market price as 
suppliers adjust to market forces and fishery conditions in order to recoup their 

investment and make profit. Aggregation is achieved by replacing p, in the 
 

* 

harvesting equation with its non trivial equilibrium values, p : p, which solves 

 
. 

p  p( A  p  qnE)  0 ………………………………………………………..8 

 
* 

To obtain p  A  qnE. ………………………………………………………….9 

 

Substituting Equation 9, in Equation 7, we obtain 

 
. 

E  E{( A  qnE)qn  c} ………………………………………………………10 

 

If    1 in Equation 10, which is the maximum value in the range  0    1 and 
 

may occur when the environmental conditions and harvesting are favorable for stock 
growth in the fishery. Thus a system of two differential equations below is obtained 
on aggregation. 

n  n{r(1  
n

 )  qE}  
.    

    

 k ……………………………………………………11 
   

.    

E  E{c  qn( A  qnE)}  
 

Equilibrium Points 

 

This gives points where the dynamics of the system in equation 11, persists in time. 

The n nullclines are: n  0, and r(1  k
n

 )  qE  0 while the E nullclines are 
 

E  0 and  c  qn( A  qnE)  0. The equilibrium points are the intersections of E 

and n nullclines, that is 

 

E0  (0,0), E1  (k,0) and E2  (n* , E* ) the solution (n* , E* ) of 
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E(n)  q
r
 (1  k

n
 ), 

 
……………………………………………………………..12 

E(n)  qn
1

 ( A  qn
c

 ) 
 
 

Solution for c in Equation 12, gives a cubic equation for parameter c as a function of 

the equilibrium fish stock c(n
*

 ) given by; 

 

c(n
*
 )  

rq
k n

*3
   rqn

*2
   Aqn

*
 ……………………………………………….13 

 

 

Solution of equilibrium values of n
*
 in Equation 13, gives one or three values which 

satisfies the equilibrium conditions depending on k. 
 

Local Stability Analysis 

 

The system in Equation 11 is linearized about the equilibrium points and study the 
trace and determinant of the matrix of linearization as various parameters are varied. 
Equation 11, can be expressed as 

 

f (n, E)  n{r(1 n )  qE}  
  

 k ……………………………………………….14 

g(n, E)  E{c  qn( A  qnE)}  

The Jacobian matrix is  

 

 f 

J (n, E)  

 

g 

 

 
n 

 
n 

 
 

(n, E) 
 

(n, E) 

 
 

f 
 

g 

 

 
E 

 
E 

 
 

(n, 

(n, 

 
 

E ) 
 
E) 

 
 


  2nr    


 r    qE 

 

  k    
   

2 
 



    

nE  qEA  2q  

 
 

 qn 
   
   

 
2 
 

2 


 c  qnA  2q n 



  E 

At E0 

    r 0  
, whose eigenvalues are: r and , the Jacobian matrix is    J (0,0)    

    

 c 
  

     0  

 c.Since one is positive and the other is negative, this equilibrium point is a saddle. 

 
E1 

 r  qk     c 
, 
  

At , J (k,0)  . If k < 
  both the eigenvalues   r and   

    

Aq 
   

   0  c  qkA     

 c  qkA are negative and hence this equilibrium point is a stable equilibrium but
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if k > 
c , then E1 is a saddle point. At the equilibrium E2 , the Jacobian 

 

  Aq                         

          


r   *      
 qn 

* 
matrix is given by,  J (n * , E * 

   

n 
     

 

  

 k         

  )                    
. 

         * 

( A 2qn 

* 

E 

* 

)  q 

2 

n 

*2 

E 

* 

        qE       

The trace and determinant  of this matrix is  tr(J )  r n
* 
 q 

2
 n

*2
 E 

*
 < 0 and 

  

                    k       

determinant  of  J (n
*
 , E 

*
 )  det(J )  q 2 n* E * ( r n*2  A  2qn

*
 E 

*
 ) .  Using 

 

    k  

the first equation in 12, in det(J ) , we obtain    

det(J )  q
2
 n

*
 E

*
(n

*
 ) Where  (n* )  3r n*2  2rn*   A. Since  q

2
 n

*
 E

*
  is 

  

  k    

positive, the sign of det(J )  will depend on (n
*

 ).Since c
'
 (n)  (n) , where 

 

the prime indicates differentiation with respect to n , we study the sign of c
'
 (n

*
 ) by 

analyzing Equation 13.For different values of k  2,3,4, and5 the number of zeroes 
 

vary. There are special points of c(n
*

 ) where two zeroes merge; this happens when 

c (n       3rq    2rqn   Aq  q(n  )  0.      n  
* 

)   k  n 
*2 * * 

     

*
 for 

'  
                          

The solution 
  

                                  
                       

c
'
 (n

*
 )  0 are n

*
1,2  k (1 1 3A  ) …………………………………………15 

   

                 3      kr            

If r < 3A , then  c
'
 (n

*
 ) is positive and c(n

*
 ) is monotonic increasing with complex 

  

     k                                  

roots. If  r > 3A  , then there two real zeroes for c
'
 (n

*
 ) . If r  3A , the two real 

         k                      k    

zeroes    coincide.   At   this  point,  n
*

1,2  k , furthermore, c k and 

                              3     9   

E
*
  r (1 n*  ) 2A . Two  different  cases  are distinguished  in  the following 

q k 
  

             k                     
propositions and their proofs: 
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Proposition 1        

For  0  r  3A and k  c , E1  is a saddle point and E2 is a positive stable 

Aq   k     

equilibrium point.      

 0  r  k     

Proof. If 

   3A 

in 15, the sign of c
'
 (n

*
 ) which is the same as the sign of      

 (n
*
 ) does  not  change  and  is always  positive.  This implies  that  det(J )  0.

 

Moreover, c
''
 (n

*
 )  6rq n

*
   2rq implies that  n

* 
k is a point of inflection. 

  k 3  

We have c(k)  qAk  but since  c is strictly increasing and may take positive or 

negative values   depending   on k ,   we   consider c(k)  qAk  c   and   as 

lim n c(n) ,we conclude that  c vanishes at a unique point  n* , thus we 
 

obtain a unique equilibrium point  E2 . If k 
c 

, then c(k)  0 and c vanishes at 
Aq     

a value n
*

  k, which corresponds to a negative fishing effort equilibrium (E
*

  0) 
 

. In this case, the equilibrium point E1 is a stable equilibrium but (n
*

 , E
*

 ) does not 

present any interest since it is corresponding to unrealistic negative fishing effort, but  

if k 
c  

then c(k)  0 and c vanishes at a value n
*
  k, with a positive fishing 

Aq              

effort equilibrium  E
* 
 0. In this case  E 1 is a  saddle point and  E 2 is the unique 

             

positive  stable   equilibrium point  as tr(J (n
*
 , E

*
 ))  0 and 

det(J (n
*
 , E

*
 ))  0.         

Proposition 2           

For  0  3A  r, E   (n
*
 , E 

*
 ) for  i  1,2,3 are  three  positive equilibrium 

 

i    k  ii        
             

points such that we have the following cases: 

 

1. If c(n
*

 )  0, c(n1
*

 )  0, we obtain a unique positive and stable 

equilibrium point (n
*

 , E
*

 ) ; 
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2. If c(n1
*

 )  0 and c(n2
*

 )  0, we obtain a unique positive and stable 

equilibrium point (n
*

 , E
*

 ) ; 

 

3. If c(n1
*

 )  0 and c(n2
*

 )  0 , we obtain three positive equilibrium 

points c(ni
*
 , Ei

*
 ) for i  1,2,3 whereby (n1

*
 , E1

*
 ) and (n3

*
 , 

E3
*
 ) are stable while (n2

*
 , E2

*
 ) is saddle equilibrium point. 

 

Proof. If 0  3A  r in Equation 15, c' vanishes at two values n  and n  
      k            1  2 

                     
                     

given    by   0  n k (1  1 3A  ) k , and 
      

         1 3    rk 3    
                  
               

 k 
 n2 

k 
(1  1 

3A 
 )  k.  since det(J ) , 

 
(n) and 

 c
'
 (n) have the 

3 
    

 3     rk             

same sign, we have: det(J )  0,  if n [0, n1 )  (n2 ,],  det(J )  0  if  
n  (n1 , n2 ). 

 

Recall that  lim *  c(n
*
 ) . As  c(n

*
 ) and c(n

*
 ) can have positive or 

        n     1   2      

negative  signs,  so for case  1,  with  c(n
*
 )  0, c(n

*
 )  0 and n

*
  n , 

                  1    1  

det(J )  0  and tr(J )  0 thus a stable equilibrium point (n
*
 , E

*
 ) . For case 2, 

since c(n
*
 )  0 and c(n

*
 )  0, with n

*
  n

*
 , det(J )  0 and tr(J )  0 thus a 

   1        2   1         

stable   equilibrium point (n
*

 , E
*

 ) . Finally for case 3, given that 

n
*
   n  n

*
   n 

2 
 n

* 
is  satisfied, (n

*
 , E

*
 ) and (n

* 
, E

*
 ) are stable since 

 1  1   2   3   1 1   3 3     

and tr(J )9  0  while (n2
*
 , E2

*
 ) is a saddle  point since det(J )  0 and 

tr(J )  0.                   

Comparison of the Fish Price in the Case of Two Stable Positive Equilibria   

If 
r 

 3A 
, 
the three equilibria  (n

* 
, E

*
 ),(n

*
 , E

*
 ),(n

*
 , E

*
 ) are  in the  positive 

   

  k      1  1 2 2 3  3     
                       

quadrant with  (n2
*

 , E2
*

 ) being a saddle while the other two being stable equilibria. 

 
 
 

 
African Journal of Education, Science and Technology, January, 2015 Vol 2, No. 2 

59 



 

Assume n
*
   n

*
 ,  we  have E *   1 ( A  c ), E 

*
   1 ( A  c )   and 

    

 31 1 qn
* 

qn
* 

3 qn
* 

 qn
* 

    

   1  1  3  3  

p1
*
  A  qn1

*
 E1

*
 , p3

*   A  qn3
* E3

* . 
 

Combining these sets of equations above, we obtain p
*
   p

*
  

c  n
*
   n

* 

 ( 3 1 ). The 
   

1 3 q  n
*
 n

* 
   

    1 3  

sign of the difference of price at equilibrium is opposite to the difference of the fish 

population. Thus, if n3
*

  n1
*

 , then we have p1
*

  p3
*

 . In general we have the 
 

following  set  of  inequalities: n3
*
   n1

*
 , E3

*
   E1

*
  and p3

*
  p1

*
 . 

Explained  as,  at  
equilibrium, the larger the fish stock the smaller the fishing effort and smaller is the 
market price. 

 

CONCLUSION 
 

The stability analysis of this model shows that depending on the parameter values of 

k and c , one, two or three strictly positive equilibria can occur.  Very Unstable state  

E0  (0,0) , which denotes absence of fish population or if there is an introduction of 
 

the fish population, the population increases due to natural growth which definitely 

attracts fishing activity .Whereas, if the fish population is diminishing due to 

environmental conditions or over-exploitation, the fishing effort will also decline. E1 

 (k,0) a stable equilibrium where the fish population is maintained at its  
carrying capacity and with absence of harvesting , the fishery persists at the carrying 

capacity. And the co-existence of two strictly positive equilibria E2  (n
*

 , E
*

 ) which 

corresponds to an over-exploited fishery (n1
*

 , E1
*

 ) permitting large fishing effort and 

an economic activity with a satisfying market price p
*

 , and an under - 
 

exploited fishery (n3
*

 , E3
*

 ) that maintains the fish stock at a desirable large level 

far from extinction but does not support any important economic activity. 
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