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Abstract

A fishery model with price dependent harvesting is developed, by formulating a
system of three differential equations describing the dynamics of the model. In order
to reduce the dimensions of the system, it is aggregated to a system of two equations
to ease analysis while preserving the necessary dynamics. Aggregation is attained by
approximate aggregation where the system of three equations is replaced by a system
of two equations through justified simplification in which evolution of the price is
taken to evolve relatively faster than the evolution of the fish stock and the fishing
effort. Local stability analysis is carried out and from the analysis, three cases of
equilibrium solutions are obtained: unstable equilibrium, stable equilibrium and the
co-existence of three strictly positive equilibria where two are stable, separated by a
saddle. In the case of the co-existence of two stable equilibrium points, market prices
are compared and a prediction of two kinds of fishery: an over-exploited fishery
where the fishery supports a large economic activity but risks extinction and an
under-exploited fishery where the stock is maintained at a large level far from
extinction but the fishery only supports a small economic activity.
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INTRODUCTION

Sustainable harvesting of renewable resources has been widely considered in bio-
economics in an attempt to have sustainable resource exploitation (Clark, 1990;
Cropper & Lee 1979; Walras, 1874). A fishery is such a renewable resource and
fishery dynamics has been studied with earlier models considering population growth
described by Verhulst‘s growth model

dn n

dt =m( - K)
where 1 = n(t) represents the population of fish at time £,7" the intrinsic growth rate
and K is the carrying capacity (Murray, 1993).

When harvesting is considered, the model in equation 1 takes the form
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dn = rn(1 - 1) —h((n, E) where h(n,E) is a function of nand E that is
dt K
describing the fishing effort.

An appropriate choice of h(n,E) is made mimicking predation depending on the fish
resource and the fishing effort. Fishing effort, especially of an economic resource, is
invariably dependent on the forces of demand and supply of the resource. For the case
of a fishery, the demand and the price on the market are key to the investment in the
fishing effort. Moreover, the demand will also determine the price and hence the
effects of supply and demand need to be considered in a more realistic model. If we
take supply and demand into consideration, a more feasible model to study the fishery
dynamics with price dependent harvesting is

dn

x=f®W—-reB) 2(3i)

dE

T i 2(ii)
L=cpD@ -5} 2(i)

The first equation describes the evolution with time of the fishdpopulation, the second
£

equation describes the evolution of the fishing effort, where =r = E(.E.Dgome is

function dependent on the cost of harvesting €, and the benefit which depends on the

market price ». such that the fishing effort is determined by the difference of the
benefits and the cost of fishing. The last equation describes the evolution with time of
the market price » = »(t) which depends on the supply and demand forces governed

supply and demand functions D (»)and S(»). A choice of the demand function and a
consideration of the price dynamics caused by constraints in harvesting and storage,

determines the extent of the effort applied in the harvesting for the fishery to be of
economical value. Smith (1969) considered a model with a constant price:

% :f(n) — h(n, E),
% = g(ph(n,E) — cE).

where = n(t) represent the mass of the fish resource, while £ = E(£) represents
the fishing effort at time £. The function f () is the natural growth function of the

resource, h(n, E) the harvesting function depending on the resource and the fishing
effort. Smith (1969) considered a Holling Type Il functional response as the

harvesting function. The constant isthe cost per unit of fishing effortf is an
adjustment positive co-efficient depending on the fishery and #. the landed fish price

per unit of the landed fish stock at time €. Stability analysis revealed two stable
positive equilibria and a saddle. Barbier et al. (2002) proposed a time discrete version
of model in equation 3, but used a Schaefer function as the functional response, that is
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a(n,E) =an with @ a positive constant called capturability (Schaefer, 1957).
Stability analysis and pooled time analysis showed two stable fixed points and a
saddle. Mchich et al. (2002) considered a model with linear variation in price given

by:

Q.

e !

e S P o ]
=kny—k ny+€ L,.r,_li-—!-qi 1484

[

d.

gn2_ —kna+ r+ernli-—‘l n2E5}

o= 2+ K 1 {ran2 —G§an3E3} 4
2Ey B iBtAe "

[ Fo SMEz—MEi+€E1 (DGyNy—C4])

iE B o Z

o =—mE+m Eq+€E3{pgang—c3l

Where, the differentiation is with respect to a fast time scale, a spatial fishery with
two fishing areas is considered. Stability analysis reveals a stable equilibrium and a
stable limit cycle. Auger et al. (2009) modified the model in Equation 4, by
considering the effects of the market price on the dynamics of Equation 4. This was
done by the addition of the equation;

% =a{D(@) — (g.nE; + qunE;)} 5

Where ? = P(£) js the price of the stock of fish at any time t, % a positive constant

describing the speed of price adjustment on the market and D (®) a demand function
which is assumed to decrease with increasing price. This equation describes the
variation of the price with time and it is assumed that the price varies according to the
difference between the demand and the supply. Stability analysis done on this model
reveals co-existence of two stable positive equilibrium with a separatrix associated to
the stable manifold of the unstable equilibrium in the middle.

DISCUSSIONS
The Model

A simple time continuous model describing the relationship between the three main
variables; Fish stock, harvesting effort and the market price alongside the parameters
is presented in equation 6:

n=f(n) - h(n, E)
E = B(PN(N, E) = CE) oo 6

p=ap(D(p) - h(n, E)

>

In the equation 6 is the logistic growth rate function, the
f(nN)=m(l-k)
harvesting function h(n, E) depending on the fish resource and the fishing effort
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mimicks predation and takes the form h(n, E) = g(n, E)E, where the function

g(n, E) is called the functional response, which is the amount of fish captured per

unit of fishing. Schaefer function g(n, E) = gn is chosen since it takes into account
mortality and harvesting as control variables to the stock growth, g is a positive
constant referred to as capturability. With this choice of f(n) andh(n, E), the first

equation in 6, becomes n =rn(1 — n ) — gnE . The second equation in 6, describes

the evolution of the fishing effort depending on the difference between the benefit
and the cost of fishing. This dynamics of harvesting are described by;

E oc (benefit — cos t), with the total benefit being the product of the market price and the
total catch, while the total cost being the product of the cost per unit fishing

and the fishing effort, thus we have E- B (ph(n, E) — cE) , where [ a constant

of proportionality is is a positive adjustment coefficient. The third equation in 6,
describes the variation of market price, which depends on the demand, supply of the
fish and the price dynamics. Assuming that relative variation in the market price is
governed by a simple balance between demand and supply of the fish which is simply

the catch, this relation is represented by; %OC D(p) —S (p), (Mackay, 1989).

Taking & as a constant of proportionality that is referred to as the price adjustment

parameter, thus the equation becomes, .= aD(p)—S(p), with D(p) and
p

S ( p) denoting the demand and supply functions respectively. With the choice of

D(p)=A-p(t) where A isa positive constant parameter representing the limit

threshold of the market price such that the demand decreases linearly with increasing
market price, and S( p) = qnE, the equation in market price becomes;

b: ap( A —p—qnE). This equation has market price evolving nonlinearly

depending on the price dynamics and the difference between demand and supply. The
existence of the price dynamics in this equation is occasioned by the price fluctuations
on the market forces caused by supply variations and reliability of storage facilities.
This function makes Equation 6, to take the form;

n
n=rm(l -k )-anE,

E:,BE(pqn—c), ...................................................................... 7
p = ap(A~p - qnE).
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Aggregated Model
Evolution of the market price is comparatively faster than the evolution of the fish

stock and fishing effort. This is due to day to day variation of market price as
suppliers adjust to market forces and fishery conditions in order to recoup their

investment and make profit. Aggregation is achieved by replacing P, in the

*

harvesting equation with its non trivial equilibrium values, p := p, which solves

P=aP(A—P—=0NE) =0 ..ccoiiiiiiii e, 8

Toobtain  P=A—-qnE. ... 9

Substituting Equation 9, in Equation 7, we obtain

E =LE{(A—ONE)AN —C} oo 10

If #=1inEquation 10, which is the maximum value in the range 0 < <1 and

may occur when the environmental conditions and harvesting are favorable for stock
growth in the fishery. Thus a system of two differential equations below is obtained
on aggregation.

I

n=n{r(l- )-qE}

K, 1
E=E{-c+qgn(A-qnE)}
Equilibrium Points

This gives points where the dynamics of the system in equation 11, persists in time.

n
The N nuliclines are: n=0, and r(1 — k ~) — qE = 0 while the E nullclines are

E =0and — ¢ + gn( A — gnE) = 0. The equilibrium points are the intersections of E

and N nuliclines, that is

Eo = (0,0), E1 = (k,0) and E2 = (n* : E ) the solution (n* , E* ) of
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r n
EM=q 0=k )

1 C
EM=gn (A=qgn )

Solution for C in Equation 12, gives a cubic equation for parameter C as a function of

*
the equilibrium fish stock c(n ) given by;

* r * * *
c(n):ﬂkn3—rqn2+Aqn ....................................................... 13

Solution of equilibrium values of N in Equation 13, gives one or three values which
satisfies the equilibrium conditions depending on K.

Local Stability Analysis

The system in Equation 11 is linearized about the equilibrium points and study the
trace and determinant of the matrix of linearization as various parameters are varied.
Equation 11, can be expressed as

f(n,E)=n{r(1 -N) - qE}

k
g(n, E) =E{-c+gn(A-qnE)}
The Jacobian matrix is

08 o) [ 2 S

N
1081, mB g.mB) | K . 2 |

9 ) \GEA-29 nE —c+qgnA-2q n E)
(r 0)

At Eo , the Jacobian matrix is J (0,0) =| | ‘| , whose eigenvalues are: r and
o —C)

— C.Since one is positive and the other is negative, this equilibrium point is a saddle.
(—r —gk ) c

‘ \ If k<—, both the eigenvalues - r and
(0 —-Cc+QkA) Aq

— C + gKA are negative and hence this equilibrium point is a stable equilibrium but

At E1 ,J(k,0) =1
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if k >L , then E1 is a saddle point. At the equilibrium Eg , the Jacobian

Ag
[ r . g )
matrix is given by, J(n LE”" k" |
| * * * 2 *2 * |

\GE (A-2gnE )-q n E
r *

The trace and determinant  of this matrix is tr(J) =— n -q 2n"?E" <0 and
k

determinant of J (n*  E *)= detJ)=q 2nE~(Ln=2 +A- 2qn* E *) . Using
k
the first equation in 12, in det(J ) , we obtain

det(J) = q2 n* E*¢(n* ) Where g(n+) = 3F 2 — 2rn- + A. Since q2 n* E* is
k

positive, the sign of det(J ) will depend on (p(n* ).since CI (n) = @(n) , where

' *
the prime indicates differentiation with respect to 1, we study the sign of C (n ) by
analyzing Equation 13.For different values of k = 2,3,4, and5 the number of zeroes

*
vary. There are special points of c(n ) where two zeroes merge; this happens when

cn_ 3 -2rgn +Agq=qge(n )=0. n,

The solution for
1 * *
C(n )=0aena=K@ -8R Y ) 15
3 kr
! * *
Ifr< 3A then C (n ) is positive and C(N ) is monotonic increasing with complex
k
roots. If r> 3A, then there two real zeroes for C (n ).If r= 3A , thetwo real
k k
zeroes  coincide. At  this  point, Nie = Kk , furthermore, c =k and
3 9

E =f(1-n) = 2A Two different cases are distinguished in the following
q k k

propositions and their proofs:
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Proposition 1

For O0<r< % and k> L , E1 isasaddle point and E, is a positive stable
k Aq
equilibrium point.
O<r< k
3A v
Proof. If in 15, the sign of C (n ) which is the same as the sign of

*
(p(n ) does not change and is always positive. Thisimplies that det(J ) > 0.

Moreover, c (n* )= 6rq n - 2rq implies that n=k isa point of inflection.
Tk 3

We have ¢(k) = gAk butsince C is strictly increasing and may take positive or
negative values depending onk, we consider c(k)=gAk—c and as

lim N—>+00 c(n) = +00,we conclude that C vanishes at a unique point n , thus we

C
obtain a unique equilibrium point E, . If K<—=— then c(k) <0 and C vanishes at

Aq
* *
avaluen > k, which corresponds to a negative fishing effort equilibrium (E < 0)

* *
. In this case, the equilibrium point Ey is a stable equilibrium but (n  E ) does not
present any interest since it is corresponding to unrealistic negative fishing effort, but

C *
if K> 7 then ¢(k) >0and Cvanishesatavalue N < K, with a positive fishing

Aq
effort equilibrium E™ > 0. Inthis case E .isa saddle pointand E , is the unique
* *
positive  stable equilibrium  point as trd(n ,E ))<0 and
* *
detJ(n ,E ))>0.

Proposition 2

For 0< 3A<rE = (n* = *) for i=1,2,3 are three positive equilibrium
k i ii
points such that we have the following cases:

* *
1. 11c(n )<0,c(ny ) <0, we obtain a unique positive and stable

* *
equilibrium point (n  E ) ;
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* *
2. 11¢(ny )>0andc(n2 ) <0, we obtain a unique positive and stable

* *
equilibrium point (n  E ) ;

* *
3. 11¢(n7 )>0andc(ny ) <O, we obtain three positive equilibrium
* * * * *
points C(Nj , Ej ) for i = 1,2,3 whereby (N7 , E7 ) and (N3

* * *
E3 ) are stable while (n2 , E2 ) is saddle equilibrium point.

Proof. If 0 < 3A <rinEquation 15, C' vanishes at two values n andn

k 1 2
given by 0<n =£(1 —\/1 —%)<£, and
13 rk 3
§< n, =K1+ ﬁ _3A Y <k since det(d), o(n)and C (N) have the
3 rk
same sign, we have: det(J)> 0, if n [0, ny) U (ny +0], det(J) <0 if

ne(ng,n).

Recall that lim . c(n ) = +0. As C(n )and C(ﬂ )can have positive or

n —+o0

negative signs, so for case 1, with c(n )< 0, ¢(n )< 0 and N > n

det(J) >0 and tr(J) < 0 thus a stable equilibrium point (n ' E ) . For case 2,
since C(N ) >0 and c(n ) >0,with <N , det(J)>0andtr(J)<O0thusa
1 1

stable equmbrlum POlﬂt(n E) _Finally for case 3, given that

n <N<KN <N <N s satisfied, (n E ) and E ) are stable since
1 1 2 2 3 3 3

and tr(J)9<0 while (nz ,Ez) is a saddle point since det(J)<O and
tr(J) <O.

Comparison of the Fish Price in the Case of Two Stable Positive Equilibria

* * * * * *
If 3A  the three equilibria (N ,E ),(n ,E ),(n ,E )areinthe positive
r> g . 1 1 2 2 3 3

* *
quadrant with (n2 , E2 ) being a saddle while the other two being stable equilibria.
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Assume n* > n*, we have E . Z_l(A—L ), E :_l(A—L) and

31 1 gn gn 3 gn gn
1 1 3 3

pl* =A- qnl* El* .ps =A—gn; Es .

- . . * * CnN —n
Combining these sets of equations above, we obtain p —p =_ (1) The

1 3 q nln3

sign of the difference of price at equilibrium is opposite to the difference of the fish
* * * *

population. Thus, if N3 > N1 , then we have P71 > P3 . In general we have the

* * * * * *
following set of inequalities: ng >n; ,E3 <E1 and p3 <p; .
Explained as, at

equilibrium, the larger the fish stock the smaller the fishing effort and smaller is the
market price.

CONCLUSION

The stability analysis of this model shows that depending on the parameter values of
k and C, one, two or three strictly positive equilibria can occur. Very Unstable state

Eo = (0,0) , which denotes absence of fish population or if there is an introduction of

the fish population, the population increases due to natural growth which definitely
attracts fishing activity .Whereas, if the fish population is diminishing due to
environmental conditions or over-exploitation, the fishing effort will also decline. E;
= (k,0) a stable equilibrium where the fish population is maintained at its

carrying capacity and with absence of harvesting , the fishery persists at the carrying

* *
capacity. And the co-existence of two strictly positive equilibria E2 = (n ) E ) which

* *
corresponds to an over-exploited fishery (nl ) E1 ) permitting large fishing effort and

an economic activity with a satisfying market price p* , and an under -

exploited fishery (n3* ) E3*) that maintains the fish stock at a desirable large level

far from extinction but does not support any important economic activity.
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