

University of Eldoret, Kenya, Mount Kenya University, Kenya; Chukwuemeka Odemegwu Ojukwu University, Nigeria; Kyambogo University, Uganda and University of Makeni, Sierra Leone.

Trading Economics. 2022. Rwanda-Unemployment with Advanced Education (% of Total Unemployment). Retrieved from https://tradingeconomics.com/rwanda/unemployment-with-advanced-education-percent-of-total-unemployment-wb-data.html

Umutesi, J. (2021). Rwandan Higher Education: Challenges and Opportunities in Meeting Labor Market Demands. Journal of African Education Studies, 30(2), 78-95.

Uwambajimana, D., Uwayezu, E., & Mbarushimana, L. (2020). Determinants of employability among university graduates: A case study of the University of Rwanda, College of Education. Journal of Research in Human Resource Management, 5(2), 27-44.

White, S., et al. (2021). The Impact of Internship Programs on Graduates' Employability: A Longitudinal Study. Journal of Applied Learning, 14(4), 312–329.

World Bank. (2018). World Development Report 2019: The Changing Nature of Work. Retrieved from https://www.worldbank.org/en/publication/wdr2019

University of Eldoret, Kenya, Mount Kenya University, Kenya; Chukwuemeka Odemegwu Ojukwu University, Nigeria; Kyambogo University, Uganda and University of Makeni, Sierra Leone.

Effects of Government Policy on the Nexus between Project Management Practices and Sustainability of Agribusiness Projects in Kenya

¹*Kabethi Joseph Miano, ²Lucy Ngugi, & ³James Maingi ¹Department of Business and Economics, Karatina University ²Department of Management Science, Kenyatta University ³Department of Applied Economics, Kenyatta University *Corresponding author Email: mianokabethi@gmail.com, mkabethi@karu.ac.ke

Abstract

The study sought to establish the effects of government policy on the relationship between known project management practices and sustainability of Kenya Agricultural Productivity and Agribusiness Projects(KAPAP) in selected Counties in Kenya. The predictor variables were capacity building practices, stakeholder management practices, project design practices, and monitoring and evaluation practices, while project sustainability was the response variable. Descriptive and explanatory designs were utilized both in the study. The population comprised of 6,401 KAPAP projects implemented between years 2012 to 2015. A sample of 376 respondents was selected through multistage random sampling methods. A semi-structured questionnaire whose reliability was tested through Cronbach alpha coefficient at 0.7 threshold was used for data collection. Multiple linear regression models were applied in data analysis after testing for normality, linearity and multicollinearity. From the findings, each of the four project management practices had a statistically significant influence on the sustainability of KAPAP projects. There was 71.8% joint influence of independent variables on the dependent variable. The proportion of joint explanation improved by 6.9% on inclusion of government policy as a moderating variable. This confirmed that government policy statistically and significantly moderated the relationship between project management practices and project sustainability. The study recommends that project management practices should be closely integrated with government policies to significantly enhance the sustainability of projects, particularly in the agribusiness sector. In addition, project managers and other stakeholders should proactively align their project strategies with current and emerging government policies to enhance sustainability. It is also recommended that policymakers should work collaboratively with project management teams to develop and nature a supportive policy environment for projects. The collaborative approach would lead to development of policies that are both practical and beneficial, ultimately contributing to the achievement of sustainable project objectives.

Keywords: Project Sustainability, Project Management Practices, Agribusiness, Government Policy

INTRODUCTION

The desire to have continuity in the flow of project benefits has contributed to the growing appreciation of project sustainability among the key project success parameters alongside cost, time and scope. In support of this view, Ika, Diallo, and Thuillier (2012) identified sustainability among the success criteria in development of international projects besides relevance, effectiveness and impact. Similarly, Olawale (2014) noted that there was growing focus on sustainability as a project success measure in the construction area. A project will thus be considered as successful or otherwise depending on among other things, the potential to continue offering the envisaged benefits into the future. The European Commission (2006) equally indicated that a project is successful when it continues to deliver benefits to the project beneficiaries and other constituencies for an extended period after the donors financial assistance has been terminated. Project sustainability has been expressed in different yet comparable ways. Australian Aid for International

University of Eldoret, Kenya, Mount Kenya University, Kenya; Chukwuemeka Odemegwu Ojukwu University, Nigeria; Kyambogo University, Uganda and University of Makeni, Sierra Leone.

Development (2000) described sustainability as the prolongation of project benefits after major assistance from a donor has ended. This concurs with the views of Joshi (2007), who noted that from the viewpoint of donors and NGOs, sustainability of a project implies the continuation of project activities and sustenance of project outcomes after the initial grant expires. Mulwa (2010) posited that project sustainability is the concern about continuity of a project until it attains the envisaged objectives. Similar views were expressed by Khan (2010), who alluded that, in general project sustainability can be described as the proportion of project initiated goods and services that are still being delivered and maintained five years after termination of project implementation. Project sustainability can thus be said to be the ability of a project to continue to deliver until it attains its set objectives.

As observed by Ilies, Crisan and Muresan (2010) the evolution of project management has been accompanied by development of practices that optimise project activity. Such practices have been embraced by various organizations and even project management associations. The Project Management Institute (2013) observed that the application of such practices has been shown to promote the possibilities of success in many areas. There is a growing discussion on project management practices and project sustainability. Onkoba (2016), identified project design among the issues influencing continuity of Carolina for Kibera society projects in Kenya. Ndayizeye (2018) established that capacity building had a notable role towards sustainability of agribusiness programs in Burundi. Capacity building and training was also singled out by Yaseen, et al., (2015) among factors that contributed to continuity of livelihood projects in Pakistan. Martens and Carvalho (2016) further identified stakeholder's management as a main factor of sustainability in project management. Biwott, Egesah and Ngeywo (2017) equally established that Monitoring and Evaluation (M&E) had a great contribution on utility and sustainability of projects implemented through constituency development fund in Kenya. Similarly, Umugwaneza and Kule (2016) reported that M&E practices strongly correlated with continuity of projects in Rwanda. Despite the lack of unanimity on the key project management practices by different authors, some popular practices in project management can be singled out to include; capacity building practices, stakeholders management practices, project design practices as well as M&E practices.

Cochran and Malone (2014) described Government or public policy as the overall framework within which government actions are undertaken to achieve public goals. In this sense, government policy is a deliberate guideline on how various activities are to be carried out in the society. Government policy comprises of laws, regulations, procedures, administrative action, incentives, or voluntary practice that prescribes how government carries out its activities in a consistent and predictable way (Egberi and Monye, 2015). Emphasising on the pervasiveness of public policy, Torjman (2005) exclaimed that, "we literally eat, drink and breathe public policy". This is evident from the myriad of laws, rules and regulations providing guidelines in every sector of the society. The purpose of government policy is to shape the way various activities are carried out in the society. Skopje (2007) elucidated that government policy influences the society or economy. As pointed by Torjman (2005), government policy seeks to achieve a predetermined end for the best interest of all members of society. Petri and Jari (2017) further noted that government policies are developed through a given process and enforced by a public agency. This way government policy moderates the way various activities are carried out in the society. The moderating role of government policy has been identified in various studies. In Nigeria, Oyelakin and Kandi (2017) established that government policies fully moderated the association between innovation technologies and entrepreneurship development. Si-jeoung, Eun-mi, Yoonkyo & ZeKun (2016) equally established that government policy had positive moderating effects on the development of small enterprises in Korea. Ojiambo (2018) also found that government policy had a notable moderating effect on the connection between success factors and actualisation of construction work projects in Kenya.

Improvements in smallholder farming through agribusiness projects has been identified as an important approach in

University of Eldoret, Kenya, Mount Kenya University, Kenya; Chukwuemeka Odemegwu Ojukwu University, Nigeria; Kyambogo University, Uganda and University of Makeni, Sierra Leone.

addressing the challenges facing humanity in many parts of the world. As noted by European Bank for Reconstruction and Development (2008), smallholder agribusiness projects have a large potential for widespread development impacts, particularly in promoting rural development. Advocating for support of agribusiness projects in the agricultural sector, the World Bank (2013), observed that, transforming smallholder agriculture from a largely subsistence enterprise to a profitable commercial venture is the prerequisite and driving force for accelerated development and sustainable economic growth in Sub-Saharan Africa. Similarly, Alliance for Green Revolution in Africa (2017) posited that turning smallholder farmers into profitable rural businesses that generate surpluses is not only the best way to achieve global food security but rather it also offers a path out of poverty and hunger. The same is given prominence in 'Kenya Vision 2030' which aims at transformation of smallholder agriculture from subsistence activities, marked by low productivity and low value addition, to 'an innovative, commercially-oriented, internationally competitive and modern agricultural sector' (GoK, 2007). The desire to improve smallholder farming has led to the design and implementation of various agribusiness projects in the country. Such projects are undertaken in a regime that has many government policies. Alila and Atieno (2006) observed that in Kenya government policy in agriculture is focussed on increasing productivity and incomes, enhanced food security, commercialisation and promotion of farm production.

Agriculture has been identified among the most important economic sectors in many countries of the world. Kibaara, Ariga, Olwande, and Jayne (2009) alluded that agriculture is a basic instrument for sustainable development, poverty reduction, and improved food security in developing countries. GoK (2012) indicated that agriculture is the backbone of Kenya's economy and the means of livelihood for most of the rural population, where 75% of the national labor force is employed. The World Bank (2018) observed that despite the importance of the agricultural sector in the country, productivity remains disappointingly low. The low productivity can be associated with the challenges affecting smallholder farmers, who are the majority in the sector. Additionally, as noted by IFAD (2018), the sustainability of benefits and efficiency is a major longstanding bottleneck for the performance of agribusiness projects in the country. Regardless of these and other challenges, GoK (2010) noted that better performance is possible in smallholder farming, but it will require concerted efforts to encourage farmers to adopt modern farming practices. In this spirit, various agribusiness projects have been designed and implemented by the government, external donors, NGOs, and even community members. Under the guidance, control, and support of relevant government policies, the agribusiness projects are expected to achieve the envisaged objectives, including sustainability. Specific policies in the agriculture sector have been enacted as Acts of Parliament, sector-specific guidelines, and regulations in Kenya. Among them is the Crop Production and Livestock Act of 1963, with various subsequent amendments. Under this Act, the minister in charge of agriculture is empowered to develop and enforce rules controlling the production, transportation, grading, preparation for market, and marketing of any crop or agricultural produce (both crops and livestock) in the country. There also exist specific policies dedicated to a given agricultural practice, such as the Potato Production and Marketing Standards Rules 2005. These rules provide guidelines on recommended potato production practices, harvesting, storage, transportation, and processing, among other things (GoK 2005). In the dairy sector, we have the Dairy Industry Regulations, 2021, which touch on various aspects of the dairy industry, including the recommendation for a minimum farm gate price for milk. The effects of these and other policies in the agricultural sector on the operations of agribusiness projects in the country remain largely unknown. The objective of the study was to assess the effects of government policy on the relationship between identified project management practices and sustainability of KAPAP projects in selected Counties in Kenva.

The following null hypothesis was tested in the study;

HO: Government policy has no significant effect on the nexus between project management practices and sustainability

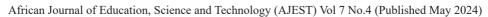
University of Eldoret, Kenya, Mount Kenya University, Kenya; Chukwuemeka Odemegwu Ojukwu University, Nigeria; Kyambogo University, Uganda and University of Makeni, Sierra Leone.

of KAPAP projects in selected Counties in Kenya.

METHODOLOGY

The inquiry was guided by a pragmatism research paradigm, which allows for the application of mixed methods as elucidated by Creswell (2012). Consequently, descriptive and explanatory designs were used for the analysis, presentation, and interpretation of the findings. The research focused on a population comprising 6,401 agribusiness projects under the KAPAP from 2010 to 2015, utilizing the Community of Interest Groups (CIGs) model. Each CIG, considered an independent project, included several members from a given neighbourhood, with the list of CIGs obtained from project coordinators in each county serving as the sampling frame. The comprehensive list of CIGs was procured from project coordinators across the twenty counties involved, spanning seven geographical regions including Coast (Kilifi, Kwale, Taita Taveta, Tana River), Central (Nyeri, Nyandarua), Eastern (Makueni, Embu, Meru), Western (Busia, Butere Mumias, Kakamega), Nyanza (Siaya, Kisii, Homa Bay), North Eastern (Garissa, Wajir), and Rift Valley (Nakuru, Transzoia, West Pokot). A stratified random sampling method was used to select a sample size of 376 from four randomly chosen regions, applying Yamane's formula with a 95 percent confidence level and a 0.05 precision level. This approach ensured a representative distribution of the sample across the selected regions, with each CIG's group chairperson or leader identified as the study respondent due to their comprehensive knowledge of the group's activities.

Data collection was conducted using a questionnaire that included both open and close-ended questions, with responses measured on a 5-point Likert Scale. The questionnaire's reliability was ensured through a pilot study in Embu County and validated through expert feedback and extensive literature review. Data analysis was carried out using SPSS software, ensuring accuracy, consistency, and completeness. Both quantitative and qualitative data were analyzed, with descriptive and inferential statistics applied to the former, and content analysis to the latter. Multiple linear regression models were utilized to explore the relationships between variables and to assess the moderating effect of government policy on the relationship between project management practices and the sustainability of KAPAP projects, with findings presented through tables and charts to elucidate the study's objectives.


RESULTS AND DISCUSSION

A total of 272 questionnaires were received back which is equivalent to 72.34% overall response rate. As shown in Table 1, the respondents were fairly distributed across the four counties selected for the study.

Table 1: Response Rate

County	No of	No. of	Response rate	No. of	Non-response	
	Questionnaires	Questionnaires	(%)	Questionnaires	rate (%)	
	issued	returned		not returned		
Nyeri	117	85	72.65	32	27.35	
Meru	109	80	73.39	29	26.61	
Busia	125	90	72.00	35	28.00	
Siaya	25	17	68.00	8	32.00	
Total	376	272	72.34	104	27.66	

Source; Survey Data (2021)

University of Eldoret, Kenya, Mount Kenya University, Kenya; Chukwuemeka Odemegwu Ojukwu University, Nigeria; Kyambogo University, Uganda and University of Makeni, Sierra Leone.

At 72.34% the response rate was considered as appropriate for the study. The response rate of over 72% across all the counties is indicative of a strong participation level, which is crucial for the credibility and reliability of the study's outcomes. Such a response rate is significant, especially in a field-based survey where logistical and geographical challenges can often lead to lower participation. The data gathered from these questionnaires are integral to understanding the relationship between project management practices and the sustainability of agricultural projects, particularly within the scope of the KAPAP. Moreover, the high response rate bolsters the study's capacity to generalize its findings to the broader population of agribusiness projects within the selected counties, thereby providing valuable insights into the efficacy of project management practices and the pivotal role of government policy in enhancing project sustainability.

Reliability Test

The reliability results are summarised in Table 2

Table 2: Reliability of Research Instrument

County	No of Questionnaires issued	No. of Questionnaires returned	Response rate (%)
Capacity building practices	3	0.89	Reliable
Stakeholders management practices	5	0.91	Reliable
Project design practices	7	0.72	Reliable
Monitoring and evaluation practices	5	0.84	Reliable
Government policies	5	0.75	Reliable
Project sustainability	9	0.78	Reliable
Overall reliability	34	0.81	Reliable

Source; Survey Data (2021)

As shown in Table 2, the computed Cronbach's Alpha values for various study variables were above 0.7. The tool was thus confirmed as reliable. The confirmation of the tool's reliability is crucial for the validity of the study's conclusions, as it ensures that the data collected is both consistent and dependable, allowing for accurate analysis and interpretation of the results.

Moderation Effect Results and Test for study Hypothesis

The data was checked for normality, linearity, multicollinearity and sampling adequacy as a precondition for running the regression. In line with the recommendations of Fairchild and Mackinnon (2009), it is necessary to confirm that the hypothesised moderating variable has a significant relationship with the predicted variable as a precondition for testing for moderation. The moderating role of government policy on the association between PMPs [capacity building practices (CBP), stakeholder management practices (SMP), project design practices (PDP), monitoring and evaluation practices (MEP)] and project sustainability (PS) was tested by checking the statistical significance of the value of coefficient of determination (r) in each model. The output is presented in Table 3 containing three models from hierarchical linear regression.

University of Eldoret, Kenya, Mount Kenya University, Kenya; Chukwuemeka Odemegwu Ojukwu University, Nigeria; Kyambogo University, Uganda and University of Makeni, Sierra Leone.

Table 3: Model Summary

Model	R	R	Adjusted	Std. Error		Chang	ge Statis	tics	
		Square	R Square	of the Estimate	R Square	F Change	df1	df2	Sig. F Change
					Change				
1	.847a	.718	.714	.14858	.718	170.024	4	267	.000
2	.887b	.787	.783	.12933	.069	86.373	1	266	.000
3	.889c	.790	.783	.12952	.003	.243	1	265	.023

a. Predictors: (Constant), MEP, CBP, SMP, PDP

b. Predictors: (Constant), MEP, CBP, SMP, PDP, GP

c. Predictors: (Constant), MEP, CBP, SMP, PDP, GP, IT

Source; Survey Data 2021

The first model in Table 3 (Model 1) indicates the direct effect of project management practices (PMPs) on project sustainability before the moderator is added. The output indicates a positive effect of PMPs on project sustainability accounting for 0.718 or 71.8% variation in the value of project sustainability that was statistically significant ($F_{4,267}$ =170.024,p<0.05). After the inclusion of government policy as shown in the second model (Model 2), the coefficient of determination increases from 0.718 to 0.787, demonstrating that the projects become more sustainable. The government policy increased project sustainability score by 0.069 confirming that government policy moderates the effect of project management practices on project sustainability. The statistical significance of the moderation effect is confirmed in the third model (Model 3) where the interaction term (IT) is introduced. The coefficient of determination improved from 0.787 to 0.790 that is statistically significant ($F_{1,265}$ =0.243,p<0.05). The government policy is thus a statistically significant moderator in the association between project management practices and project sustainability. The government policy was found to statistically and significantly moderate the effect of the project management practices (PMPs) on project sustainability, allowing for the presentation of the relationship in equations 1.1, 1.2, and 1.3. However, it was necessary to test for reliability of such models using ANOVA as shown in table 4.

Table 4: ANOVA

#	Model	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	15.013	4	3.753	170.024	.000b
	Residual	5.894	267	.022		
	Total	20.908	271			
2	Regression	16.458	5	3.292	193.647	.000c
	Residual	4.449	266	.017		
	Total	20.908	271			
3	Regression	16.517	6	2.753	161.941	.000d
	Residual	4.391	265	.017		
	Total	20.908	271			
	D 1 . TT 111 DG					

a Dependent Variable: PS

b Predictors: (Constant), MEP, CBP, SMP, PDP

c Predictors: (Constant), MEP, CBP, SMP, PDP, GP

University of Eldoret, Kenya, Mount Kenya University, Kenya; Chukwuemeka Odemegwu Ojukwu University, Nigeria; Kyambogo University, Uganda and University of Makeni, Sierra Leone.

#	Model	Sum of Squares	df	Mean Square	F	Sig.
d	Predictors: (Constant), MEP, CBP, SM	IP, PDP, GP, IT				
e	IT = MEP*CBP*SMP*PDP*GP					

Source; Survey Data 2021

The output in Table 4 showed that the models in Equations 1.1, 1.2, and 1.3 were statistically significant at 95% confidence level, that is for Model $1(F_{4,267}=170.024,p<0.05)$, Model $2(F_{5,266}=193.647,p<0.05)$, and Model $3(F_{6,265}=161.941,p<0.05)$. This output showed that PMPs can be used to reliably predict project sustainability, and this prediction is enhanced by implementation of government policies. The modelling of the relationship between project management practices {(capacity building practices (CBP), stakeholder management practices (SMP), project design practices (PDP), monitoring and evaluation practices (MEP)} and project sustainability (PS) as moderated by government policies (GP) was done using a hierarchical regression whose model coefficients are presented in Table 5

Table 5: Regression Coefficients with Moderating Variable

#	Model	Unstand	lardized	Standardized	t	Sig.	95.0% C	onfidence
		Coefficie	ents	Coefficients	-		Interval for B	
		В	Std.	Beta			Lower	Upper
		Error			Bound	Bound		
1	(Constant)	1.329	.117		11.358	.000	1.098	1.559
	CBP	.331	.072	.334	4.597	.000	.190	.472
	SMP	.171	.069	.217	2.478	.014	.036	.306
	PDP	.533	.114	.685	4.675	.000	.251	.815
	MEP	.124	.036	.128	3.444	.000	.005	.195
2	(Constant)	1.148	.104		11.062	.000	.944	1.353
	CBP	.334	.068	.347	4.912	.000	.201	.467
	SMP	.188	.060	.238	3.133	.002	.070	.306
	PDP	.478	.099	.614	4.826	.000	.283	.673
	MEP	.206	.037	.365	5.532	.000	.133	.279
	GP	.297	.032	.475	9.294	.000	.234	.360
3	(Constant)	1.151	.104		11.057	.000	.946	1.356
	CBP	.341	.085	.351	4.012	.000	.174	.508
	SMP	.191	.061	.242	3.147	.002	.071	.310
	PDP	.475	.099	.610	4.798	.000	.280	.670
	MEP	.206	.037	.367	5.538	.000	.133	.279
	GP	.296	.032	.474	9.240	.000	.233	.359
	IT	.394	.071	.306	5.549	.000	.255	.533

Dependent Variable: PS,

IT = MEP*CBP* SMP* PDP*GP

Source; Survey Data 2021

The output in Table 1.7 produced the following model equations:

University of Eldoret, Kenya, Mount Kenya University, Kenya; Chukwuemeka Odemegwu Ojukwu University, Nigeria; Kyambogo University, Uganda and University of Makeni, Sierra Leone.

 $PS = 1.329 + 0.331 CBP + 0.171 SMP + 0.533 PDP + 0.124 MEP \\ Equation \ 1.1 \\ PS = 1.148 + 0.334 CBP + 0.188 SMP + 0.478 PDP + 0.206 MEP + 0.297 GP \\ Equation \ 1.2 \\ PS = 1.151 + 0.341 CBP + 0.191 SMP + 0.475 PDP + 0.206 MEP + 0.296 GP + 0.394 IT \\ Equation \ 1.3$

Where: CBP = Capacity Building Practices,

SMP = Stakeholder Management Practices,

PDP = Project Design Practices,

MEP = Monitoring and Evaluation Practices

PS = Project Sustainability
GP = Government Policy

IT = MEP*CBP*SMP*PDP*GP

The study found that all the regression coefficients in Table 5 have probability values below 0.05 at the 5% level of significance, indicating that the coefficients are significantly different from zero. This suggests that Project Management Practices (PMPs), including capacity-building practices (CBP), stakeholder management practices (SMP), project design practices (PDP), and project monitoring and evaluation practices (MEP), positively predict project sustainability (PS). The increasing values of regression coefficients in equations 1.1, 1.2, and 1.3 further confirm the significant moderation by government policies on the effect of PMPs on project sustainability. Consequently, the study rejected the null hypothesis. Hence, government policy has a significant effect on the relationship between project management practices and sustainability of KAPAP projects in selected Counties in Kenya. These findings align with previous research (Ojiambo, 2018; Oyelakin and Kandi, 2017; Si-jeoung et al., 2016), which demonstrated that government policies positively moderate project success. However, this conclusion contrasts with the findings of Ndachi and Kimutai (2018), who observed a negative impact of government policies on the execution of health projects in Nyeri County, and Ochenge (2018), who found no significant influence of government policy on the success of road projects.

CONCLUSIONS AND RECOMMENDATIONS

The study set out to investigate the effects of government policy on the relationship between project management practices and the sustainability of KAPAP projects in selected counties in Kenya. Specifically, the investigation looked at the moderating effect of government policy on the relationship between capacity building practices, stakeholder's management practices, project design practices as well as M&E practices on one side and sustainability of KAPAP projects in selected counties in Kenya. The study established that each of the four project management practices had a statistically significant influence on the sustainability of KAPAP projects. The proportion of joint explanation of dependent variable (PS) by the independent variables (PMPs) improved on inclusion of government policy as a moderating variable. This confirmed that government policy statistically significantly moderated the relationship between project management practices and project sustainability.

The study recommends for close integration of project management practices with government policies to enhance the sustainability of projects, particularly in the agribusiness sector. This integration is crucial for leveraging the moderating effect of government policies on the relationship between project management practices-such as capacity building, stakeholder management, project design, and monitoring and evaluation and project sustainability. In addition, it is recommended that project managers and stakeholders proactively align their project strategies with current and emerging government policies. This alignment not only ensures compliance with regulatory requirements but also provides an

University of Eldoret, Kenya, Mount Kenya University, Kenya; Chukwuemeka Odemegwu Ojukwu University, Nigeria; Kyambogo University, Uganda and University of Makeni, Sierra Leone.

opportunity to access government support and resources, which can substantially improve project outcomes. It is also recommended that government bodies and policymakers work collaboratively with project management teams to create a supportive policy environment for projects. By developing and implementing policies that address common project challenges and provide clear guidelines for sustainability, government entities can facilitate the successful execution and long-term sustainability of agribusiness projects. This collaborative approach ensures that policies are both practical and beneficial, ultimately contributing to the achievement of sustainable agribusiness projects.

REFERENCES

AGRA (2017). Africa Agriculture Status Report: The Business of Smallholder Agriculture in Sub-Saharan Africa (Issue 5). Nairobi, Kenya: Alliance for a Green Revolution in Africa (AGRA). Issue No. 5

Alila, P., & Atieno, R. (2006). Agricultural Policy in Kenya: Issues and Processes. Institute for Development Studies University of Nairobi. Nairobi Kenya.

AusAID (2000). http://www.oecd.org/dac/evaluation/dcdndep/31950216.pdf promoting practical sustainability.

Biwott, T., Egesah, O. & Ngeywo, J. (2017). Importance of Monitoring and Evaluation in the Sustainability of Constituency Development Fund (CDF) Projects in Kenya. IRA-International Journal of Management & Social Sciences 7(1), 45-51. https://doi.org/10.21013/jmss.v7.n1.p6

Cochran, C., L. and Malone, E., F. (2014). Public Policy: Perspectives and Choices. 5th edn. Lynne Rienner Publishers. USA. https://doi.org/10.1515/9781685850739

EBRD (2008). Special studies on agribusiness operations. https://www.ebrd.com > documents > evaluation

Egberi, A., & Monye M. (2015). Perceptions of the Role of Government Policies in Promoting the Growth of Business in Nigeria: A Study of Delta State Government Three Point Agenda. Journal of Policy and Development Studies. 9(5), 101-109 www.arabianjbmr.com/JPDS index.php. https://doi.org/10.12816/0018247

Egberi, A., & Monye M. (2015). Perceptions of the Role of Government Policies in Promoting the Growth of Business in Nigeria: A Study of Delta State Government Three Point Agenda. Journal of Policy and Development Studies. 9(5), 101-109 www.arabianjbmr.com/JPDS index.php. https://doi.org/10.12816/0018247

European Commission Directorate-General Education and Culture (2006). Sustainability of international cooperation projects in the field of higher education and vocational training Handbook on Sustainability. http://ec.europa.eu/dgs/education culture

Fairchild, A. J., & MacKinnon, D. P. (2009). A General Model for Testing Mediation and Moderation Effects. Prev Sci 10, 87–99 (2009). https://doi.org/10.1007/s11121-008-0109-6.

GoK (2005). The Crop Production and Livestock (Seed and Ware Potato Production and Marketing Standards) Rules, 2005. Government printer. Nairobi

GoK (2007). Kenya Vision 2030. The Popular Version. Nairobi: Government Printer

GoK (2010). Agricultural sector Development strategy 2010-2020. http://projects.worldbank.org/ P109683

IFAD (2018). Annual Report on Results and Impact of IFAD Operations. https://www.ifad.org/en/web/ioe/evaluation/asset/40802619

University of Eldoret, Kenya, Mount Kenya University, Kenya; Chukwuemeka Odemegwu Ojukwu University, Nigeria; Kyambogo University, Uganda and University of Makeni, Sierra Leone.

Ika, L., A., Diallo, A., & Thuillier, D., (2012). Critical success factors for World Bank projects: An empirical investigation. International Journal of Project Management, 30(1), 105–116. https://doi.org/10.1016/j.ijproman.2011.03.005

Ilies, L., Crisan, E. & Muresan, I. (2010). Best Practices in Project Management. Review of International Comparative Management.11(1), 43-51

Khan, G., R. (2010). Sustainable Development in International Intellectual Property Law – New Approaches from EU Economic Partnership Agreements? ICTSD's Programme on IPRs and Sustainable Development, Issue Paper No.29, International Centre for Trade and Sustainable Development, Geneva, Switzerland.

Kibaara, B., Ariga, J., Olwande J., & Jayne T, S. (2009). Trends in Kenyan Agricultural Productivity: 1997-2007. Tegemeo Institute of Agricultural Policy and Development. Nairobi.

Martens M., & Carvalho M., (2016). Key factors of sustainability in project management context: A survey exploring the project managers' perspective, Int. J. Proj. Manag. http://dx.doi.org/10.1016/j.ijproman.2016.04.004

Mulwa, F. (2010). Demystifying Participatory Community Development. Revised edition, Pauline's Publications Africa, Nairobi.

Ndachi, H. N., & Kimutai, G. (2018). Project Management Practices and Implementation of Health Projects in Public Hospitals in Nyeri County, Kenya. www.strategicjournals.com, ©strategic Journals 5(2), 2518 — 2532. https://doi.org/10.61426/sjbcm.v5i2.793

Ndayizeye, L. (2018). Capacity building and project sustainability in Ngozi Province, Burundi: a case study of agribusiness project. http://www.ir.kiu.ac.ug/bitstream/handle/20.500.123

Ochenge, M. D. (2018). Project Management Practices and Performance of Road Infrastructure Projects done by Local Firms in the Lake Basin Region, Kenya. (Phd Thesis). Kenyatta University, Kenya

Ojiambo, J. N. (2018). Critical success factors, Government policy compliance and completion of construction projects in public secondary schools in Bugoma County, Kenya. (PhD Thesis). University of Nairobi, Kenya.

Olawale, A. (2014). The growing importance of sustainability as a project management objective. http://www.Sustainabilities.interserve.com/2014/03/25/project-management/

Onkoba, L., (2016). Determinants of sustainability of community based projects in Kenya: The case of Carolina for Kibera projects. http://erepository.uonbi.ac.ke/bitstream/handle/11295/100040

Oyelakin, O. & Kandi, U. (2017). The Moderating Role of Government Policies on the Relationship between Technology, Innovation and Entrepreneurship Development in Nigeria: Universal Journal of Management 5(10), 477 — 484. https://doi.org/10.13189/ujm.2017.051002

Petri, V., & Jari, S., (2017). Intelligent Health Policy: Theory, Concept and Practice https://books.google.co.ke/books?isbn=3319695967

PMI, (2013). A guide to Project Management Body of Knowledge, 5th Edition, Project Management Institute, Newton Square, PA

Saunders, M., Lewis, P. & Thornhill, A. (2007). Research Methods for Business Students, 5th edition, Great Britain, Prentice Hall

Si-jeoung, Eun-mi, Yoonkyo & ZeKun (2016). The effect of service innovation on R&D activities and government

University of Eldoret, Kenya, Mount Kenya University, Kenya; Chukwuemeka Odemegwu Ojukwu University, Nigeria; Kyambogo University, Uganda and University of Makeni, Sierra Leone.

support systems: the moderating role of government support systems in Korea. Journal of Open Innovation: Technology, Market, and Complexity. DOI 10.1186/s40852-016-0032-1

Torjman, S. (2005). What is Policy? Caledon Institute of Social Policy. Toronto, Canada. www.caledoninst.org

Umugwaneza, A. & Kule, J., W. (2016). Role of Monitoring and Evaluation on Project Sustainability in Rwanda. A Case Study of Electricity Access Scale-Up and Sector-Wide Approach Development Project. European Journal of Business and Social Sciences. 5(07), 159 – 177

World Bank (2013). Growing Africa Unlocking the Potential of Agribusiness. Washington, DC: World Bank Group. http://documents.worldbank.org/

Yaseen, M., Saida, H., Muhammad, T., Muhammad, A., & Sheer, A. (2015). Role of Capacity Building and Training for Sustainable Livelihood of Farming Community in Pakistan. European Academic Research Vol. III, Issue 3/ June 2015.

